The optical gain of GaAs1-x-y N x Bi y nanowires under the [100] direction uniaxial stress

被引:0
作者
Li, Xin [1 ,2 ]
Xiong, Wen [1 ,2 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[2] Univ Chinese Acad Sci, Chongqing Sch, Chongqing 400714, Peoples R China
基金
中国国家自然科学基金;
关键词
16-band effective-mass theory; band anticrossing model; optical gain; uniaxial stress; TEMPERATURE-DEPENDENCE; BAND PARAMETERS; QUANTUM-WELL; GROWTH; GAASBI;
D O I
10.35848/1882-0786/acf7ac
中图分类号
O59 [应用物理学];
学科分类号
摘要
Based on the 16-band effective-mass theory, the band structures and optical gain of GaAs1-x-y NxBiy nanowires under [100] direction uniaxial stress are investigated. Our calculations indicate, as the increase of stress, the first gain peak position can be redshifted to optical communication band even though nitrogen and bismuth contents are less than 0.05, and we almost obtain pure optical gain along z-direction due to the strong inhibition of optical gain along x-direction. Moreover, GaAs1-x-y NxBiy nanowires with high nitrogen contents and large diameters are apt to be adjusted to 1310-1550 nm under the proper stress.
引用
收藏
页数:5
相关论文
共 25 条
  • [1] Valence band anticrossing in GaBixAs1-x
    Alberi, K.
    Dubon, O. D.
    Walukiewicz, W.
    Yu, K. M.
    Bertulis, K.
    Krotkus, A.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (05)
  • [2] Modeling of the Growth Mechanisms of GaAsBi and GaAs Nanowires
    Blel S.
    Bilel C.
    [J]. Journal of Electronic Materials, 2021, 50 (6) : 3380 - 3384
  • [3] Luminescence properties of dilute bismide systems
    Breddermann, B.
    Baeumner, A.
    Koch, S. W.
    Ludewig, P.
    Stolz, W.
    Volz, K.
    Hader, J.
    Moloney, J. V.
    Broderick, C. A.
    O'Reilly, E. P.
    [J]. JOURNAL OF LUMINESCENCE, 2014, 154 : 95 - 98
  • [4] Band engineering in dilute nitride and bismide semiconductor lasers
    Broderick, C. A.
    Usman, M.
    Sweeney, S. J.
    O'Reilly, E. P.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (09)
  • [5] Theory of optical gain of Ge-SixGeySn1-x-y quantum-well lasers
    Chang, Shu-Wei
    Chuang, Shun Lien
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2007, 43 (3-4) : 249 - 256
  • [6] Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy
    Cooke, D. G.
    Hegmann, F. A.
    Young, E. C.
    Tiedje, T.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (12)
  • [7] DUTTA NK, 1981, APPL PHYS LETT, V38, P407, DOI 10.1063/1.92380
  • [8] Giant spin-orbit bowing in GaAs1-xBix
    Fluegel, B.
    Francoeur, S.
    Mascarenhas, A.
    Tixier, S.
    Young, E. C.
    Tiedje, T.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (06)
  • [9] Valence band engineering of GaAsBi for low noise avalanche photodiodes
    Liu, Yuchen
    Yi, Xin
    Bailey, Nicholas J.
    Zhou, Zhize
    Rockett, Thomas B. O.
    Lim, Leh W.
    Tan, Chee H.
    Richards, Robert D.
    David, John P. R.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] TEMPERATURE-DEPENDENCE OF LONG WAVELENGTH SEMICONDUCTOR-LASERS
    OGORMAN, J
    LEVI, AFJ
    TANBUNEK, T
    COBLENTZ, DL
    LOGAN, RA
    [J]. APPLIED PHYSICS LETTERS, 1992, 60 (09) : 1058 - 1060