A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations

被引:1
作者
Du, Zhijie [1 ]
Duan, Huoyuan [2 ]
机构
[1] Wuhan Univ Technol, Sch Nat Sci, Wuhan 430070, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Maxwell's equations; Finite element method; Grad-div stabilization; Uniform convergence; Edge element on nonaffine grid; ELECTROMAGNETIC-FIELDS; EDGE ELEMENTS; QUADRILATERALS; H(DIV); APPROXIMATION; SINGULARITIES; BOUNDARY;
D O I
10.1007/s10543-023-00988-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A stabilized mixed finite element method is proposed for solving the time-harmonic Maxwell's equations, with the divergence constraint imposed by the multiplier in a weak sense. By a grad-div stabilization, for some lowest-order edge elements on nonaffine quadrilateral, hexahedral and prismatic grids, we prove a type of uniform convergence for the zero-frequency Maxwell's equations, then prove the well-posedness and the convergence for the time-harmonic Maxwell's equations. Numerical results confirm the theoretical results.
引用
收藏
页数:32
相关论文
共 43 条
  • [1] Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Lee, Jeonghun J.
    Yotov, Ivan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (06) : 1037 - 1077
  • [2] Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
  • [3] 2-B
  • [4] Arbogast T, 2019, NUMER MATH, V142, P1, DOI 10.1007/s00211-018-0998-7
  • [5] TWO FAMILIES OF H(div) MIXED FINITE ELEMENTS ON QUADRILATERALS OF MINIMAL DIMENSION
    Arbogast, Todd
    Correa, Maicon R.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3332 - 3356
  • [6] Quadrilateral H(div) finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2429 - 2451
  • [7] Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra
    Bergot, Morgane
    Durufle, Marc
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (05) : 1372 - 1414
  • [8] High-order optimal edge elements for pyramids, prisms and hexahedra
    Bergot, Morgane
    Durufle, Marc
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) : 189 - 213
  • [9] Approximation properties of lowest-order hexahedral Raviart-Thomas finite elements
    Bermúdez, A
    Gamallo, P
    Nogueiras, MR
    Rodríguez, R
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 340 (09) : 687 - 692
  • [10] A local regularization operator for triangular and quadrilateral finite elements
    Bernardi, C
    Girault, V
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) : 1893 - 1916