A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations

被引:1
作者
Du, Zhijie [1 ]
Duan, Huoyuan [2 ]
机构
[1] Wuhan Univ Technol, Sch Nat Sci, Wuhan 430070, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Maxwell's equations; Finite element method; Grad-div stabilization; Uniform convergence; Edge element on nonaffine grid; ELECTROMAGNETIC-FIELDS; EDGE ELEMENTS; QUADRILATERALS; H(DIV); APPROXIMATION; SINGULARITIES; BOUNDARY;
D O I
10.1007/s10543-023-00988-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A stabilized mixed finite element method is proposed for solving the time-harmonic Maxwell's equations, with the divergence constraint imposed by the multiplier in a weak sense. By a grad-div stabilization, for some lowest-order edge elements on nonaffine quadrilateral, hexahedral and prismatic grids, we prove a type of uniform convergence for the zero-frequency Maxwell's equations, then prove the well-posedness and the convergence for the time-harmonic Maxwell's equations. Numerical results confirm the theoretical results.
引用
收藏
页数:32
相关论文
共 44 条
[1]   Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra [J].
Ambartsumyan, Ilona ;
Khattatov, Eldar ;
Lee, Jeonghun J. ;
Yotov, Ivan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (06) :1037-1077
[2]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[3]  
2-B
[4]  
[Anonymous], 1989, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
[5]  
Arbogast T, 2019, NUMER MATH, V142, P1, DOI 10.1007/s00211-018-0998-7
[6]   TWO FAMILIES OF H(div) MIXED FINITE ELEMENTS ON QUADRILATERALS OF MINIMAL DIMENSION [J].
Arbogast, Todd ;
Correa, Maicon R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) :3332-3356
[7]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[8]   Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra [J].
Bergot, Morgane ;
Durufle, Marc .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (05) :1372-1414
[9]   High-order optimal edge elements for pyramids, prisms and hexahedra [J].
Bergot, Morgane ;
Durufle, Marc .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :189-213
[10]   Approximation properties of lowest-order hexahedral Raviart-Thomas finite elements [J].
Bermúdez, A ;
Gamallo, P ;
Nogueiras, MR ;
Rodríguez, R .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (09) :687-692