Deep-learning-based 3D blood flow reconstruction in transmissive laser speckle imaging

被引:6
作者
Chen, Ruoyu [1 ]
Tong, Shanbao [1 ]
Miao, Peng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
MONTE-CARLO; SIMULATION;
D O I
10.1364/OL.489480
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Transmissive laser speckle imaging (LSI) is useful for mon-itoring large field-of-view (FOV) blood flow in thick tissues. However, after longer transmissions, the contrast of the transmitted speckle images is more likely to be blurred by multiple scattering, resulting in decreased accuracy and spatial resolution of deep vessels. This study proposes a deep-learning-based strategy for high spatiotemporal res-olution three-dimensional (3D) reconstruction from a single transilluminated laser speckle contrast image, providing more structural and functional details without multifocus two-dimensional (2D) imaging or 3D optical imaging with point/line scanning. Based on the correlation transfer equa-tion, a large training dataset is generated by convolving vessel masks with depth-dependent point spread functions (PSF). The UNet and ResNet are used for deblurring and depth estimation. The blood flow in the reconstructed 3D vessels is estimated by a depth-dependent contrast model. The pro-posed method is evaluated with simulated data and phantom experiments, achieving high-fidelity structural reconstruc-tion with a depth-independent estimation of blood flow. This fast 3D blood flow imaging technique is suitable for real-time monitoring of thick tissue and the diagnosis of vascular dis-eases.& COPY; 2023 Optica Publishing Group
引用
收藏
页码:2913 / 2916
页数:4
相关论文
共 24 条
[1]   Failure of collateral blood flow is associated with infarct growth in ischemic stroke [J].
Campbell, Bruce C. V. ;
Christensen, Soren ;
Tress, Brian M. ;
Churilov, Leonid ;
Desmond, Patricia M. ;
Parsons, Mark W. ;
Barber, P. Alan ;
Levi, Christopher R. ;
Bladin, Christopher ;
Donnan, Geoffrey A. ;
Davis, Stephen M. .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2013, 33 (08) :1168-1172
[2]   Optical coherence tomography based angiography [Invited] [J].
Chen, Chieh-Li ;
Wang, Ruikang K. .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :1056-1082
[3]  
Chen R., 2023, UNET RESNET BASED 3D
[4]   Transmissive multifocal laser speckle contrast imaging through thick tissue [J].
Chen, Ruoyu ;
Miao, Peng ;
Tong, Shanbao .
JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2023, 16 (05)
[5]   Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging [J].
Cheng, Haiying ;
Duong, Timothy Q. .
OPTICS LETTERS, 2007, 32 (15) :2188-2190
[6]   Dynamic light scattering Monte Carlo: a method for simulating time-varying dynamics for ordered motion in heterogeneous media [J].
Davis, Mitchell A. ;
Dunn, Andrew K. .
OPTICS EXPRESS, 2015, 23 (13) :17145-17155
[7]   The copula: a tool for simulating speckle dynamics [J].
Duncan, Donald D. ;
Kirkpatrick, Sean J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (01) :231-237
[8]   Dynamic imaging of cerebral blood flow using laser speckle [J].
Dunn, AK ;
Bolay, T ;
Moskowitz, MA ;
Boas, DA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (03) :195-201
[9]  
Elliott Amicia D, 2020, Curr Protoc Cytom, V92, pe68, DOI 10.1002/cpcy.68
[10]   Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells [J].
Follain, Gautier ;
Osmani, Nael ;
Azevedo, Ana Sofia ;
Allio, Guillaume ;
Mercier, Luc ;
Karreman, Matthia A. ;
Solecki, Gergely ;
Leon, Maria Jesus Garcia ;
Lefebvre, Olivier ;
Fekonja, Nina ;
Hille, Claudia ;
Chabannes, Vincent ;
Dolle, Guillaume ;
Metivet, Thibaut ;
Hovsepian, Francois Der ;
Prudhomme, Christophe ;
Pichot, Angelique ;
Paul, Nicodeme ;
Carapito, Raphael ;
Bahram, Siamak ;
Ruthensteiner, Bernhard ;
Kemmling, Andre ;
Siemonsen, Susanne ;
Schneider, Tanja ;
Fiehler, Jens ;
Glatzel, Markus ;
Winkler, Frank ;
Schwab, Yannick ;
Pantel, Klaus ;
Harlepp, Sebastien ;
Goetz, Jacky G. .
DEVELOPMENTAL CELL, 2018, 45 (01) :33-+