Inferring scale-dependent non-equilibrium activity using carbon nanotubes

被引:11
作者
Bacanu, Alexandru [1 ,2 ,3 ]
Pelletier, James F. [1 ,4 ,5 ]
Jung, Yoon [1 ]
Fakhri, Nikta [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA USA
[3] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA USA
[4] CSIC, Ctr Nacl Biotecnol CNB, Madrid, Spain
[5] Grp Interdisciplinar Sistemas Complejos GISC, Madrid, Spain
关键词
FILAMENTS;
D O I
10.1038/s41565-023-01395-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In living systems, irreversible, yet stochastic, molecular interactions form multiscale structures (such as cytoskeletal networks), which mediate processes (such as cytokinesis and cellular motility) in a close relationship between the structure and function. However, owing to a lack of methods to quantify non-equilibrium activity, their dynamics remain poorly characterized. Here, by measuring the time-reversal asymmetry encoded in the conformational dynamics of filamentous single-walled carbon nanotubes embedded in the actomyosin network of Xenopus egg extract, we characterize the multiscale dynamics of non-equilibrium activity encoded in bending-mode amplitudes. Our method is sensitive to distinct perturbations to the actomyosin network and the concentration ratio of adenosine triphosphate to adenosine diphosphate. Thus, our method can dissect the functional coupling of microscopic dynamics to the emergence of larger scale non-equilibrium activity. We relate the spatiotemporal scales of non-equilibrium activity to the key physical parameters of a semiflexible filament embedded in a non-equilibrium viscoelastic environment. Our analysis provides a general tool to characterize steady-state non-equilibrium activity in high-dimensional spaces. Non-equilibrium mechanical activity in active matter is quantified across spatiotemporal scales through time-reversal-asymmetry measurements of conformational fluctuations of carbon nanotube probes.
引用
收藏
页码:905 / +
页数:10
相关论文
共 41 条
[1]   Broken detailed balance at mesoscopic scales in active biological systems [J].
Battle, Christopher ;
Broedersz, Chase P. ;
Fakhri, Nikta ;
Geyer, Veikko F. ;
Howard, Jonathon ;
Schmidt, Christoph F. ;
MacKintosh, Fred C. .
SCIENCE, 2016, 352 (6285) :604-607
[2]   Symmetry, Thermodynamics, and Topology in Active Matter [J].
Bowick, Mark J. ;
Fakhri, Nikta ;
Marchetti, M. Cristina ;
Ramaswamy, Sriram .
PHYSICAL REVIEW X, 2022, 12 (01)
[3]   Nonequilibrium microtubule fluctuations in a model cytoskeleton [J].
Brangwynne, Clifford P. ;
Koenderink, Gijsje H. ;
MacKintosh, Frederick C. ;
Weitz, David A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (11)
[4]   ATP Consumption of Eukaryotic Flagella Measured at a Single-Cell Level [J].
Chen, Daniel T. N. ;
Heymann, Michael ;
Fraden, Seth ;
Nicastro, Daniela ;
Dogic, Zvonimir .
BIOPHYSICAL JOURNAL, 2015, 109 (12) :2562-2573
[5]   Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences [J].
Crooks, GE .
PHYSICAL REVIEW E, 1999, 60 (03) :2721-2726
[6]   Equilibrium regained: From nonequilibrium chaos to statistical mechanics [J].
Egolf, DA .
SCIENCE, 2000, 287 (5450) :101-104
[7]  
England JL, 2015, NAT NANOTECHNOL, V10, P919, DOI [10.1038/nnano.2015.250, 10.1038/NNANO.2015.250]
[8]   High-resolution mapping of intracellular fluctuations using carbon nanotubes [J].
Fakhri, Nikta ;
Wessel, Alok D. ;
Willms, Charlotte ;
Pasquali, Matteo ;
Klopfenstein, Dieter R. ;
MacKintosh, Frederick C. ;
Schmidt, Christoph F. .
SCIENCE, 2014, 344 (6187) :1031-1035
[9]   Brownian Motion of Stiff Filaments in a Crowded Environment [J].
Fakhri, Nikta ;
MacKintosh, Frederick C. ;
Lounis, Brahim ;
Cognet, Laurent ;
Pasquali, Matteo .
SCIENCE, 2010, 330 (6012) :1804-1807
[10]   Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids [J].
Fakhri, Nikta ;
Tsyboulski, Dmitri A. ;
Cognet, Laurent ;
Weisman, R. Bruce ;
Pasquali, Matteo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) :14219-14223