Diagnostic performance of artificial intelligence algorithms for detection of pulmonary involvement by COVID-19 based on portable radiography

被引:2
作者
Cobenas, Ricardo Luis [1 ]
de Vedia, Maria [1 ]
Florez, Juan [1 ]
Jaramillo, Daniela [1 ]
Ferrari, Luciana [1 ]
Re, Ricardo [1 ]
机构
[1] Ctr Educ Med Invest Clin Norberto Quirno CEMIC, Dept Diagnost Imagenes, Buenos Aires, Argentina
来源
MEDICINA CLINICA | 2023年 / 160卷 / 02期
关键词
Artificial intelligence; COVID-19; Thoracic RX; Pneumonia; Machine learning; Lung;
D O I
10.1016/j.medcli.2022.04.016
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction and objectives: To evaluate the diagnostic performance of different artificial intelligence (AI) algorithms for the identification of pulmonary involvement by SARS-CoV-2 based on portable chest radiography (RX).Material and methods: Prospective observational study that included patients admitted for suspected COVID-19 infection in a university hospital between July and November 2020. The reference standard of pulmonary involvement by SARS-CoV-2 comprised a positive PCR test and low-tract respiratory symp-toms.Results: 493 patients were included, 140 (28%) with positive PCR and 32 (7%) with SARS-CoV-2 pneumo-nia. The AI-B algorithm had the best diagnostic performance (areas under the ROC curve AI-B 0.73, vs. AI-A 0.51, vs. AI-C 0.57). Using a detection threshold greater than 55%, AI-B had greater diagnostic performance than the specialist [(area under the curve of 0.68 (95% CI 0.64-0.72), vs. 0.54 (95% CI 0.49-0.59)].Conclusion: AI algorithms based on portable RX enabled a diagnostic performance comparable to human assessment for the detection of SARS-CoV-2 lung involvement. (c) 2022 Elsevier Espana, S.L.U. All rights reserved.
引用
收藏
页码:78 / 81
页数:4
相关论文
共 6 条
[1]   Approaches Based on Artificial Intelligence and the Internet of Intelligent Things to Prevent the Spread of COVID-19: Scoping Review [J].
Adly, Aya Sedky ;
Adly, Afnan Sedky ;
Adly, Mahmoud Sedky .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (08)
[2]   Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects [J].
Albahri, O. S. ;
Zaidan, A. A. ;
Albahri, A. S. ;
Zaidan, B. B. ;
Abdulkareem, Karrar Hameed ;
Al-qaysi, Z. T. ;
Alamoodi, A. H. ;
Aleesa, A. M. ;
Chyad, M. A. ;
Alesa, R. M. ;
Kem, L. C. ;
Lakulu, Muhammad Modi ;
Ibrahim, A. B. ;
Rashid, Nazre Abdul .
JOURNAL OF INFECTION AND PUBLIC HEALTH, 2020, 13 (10) :1381-1396
[3]   ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19 [J].
Chowdhury, Nihad Karim ;
Kabir, Muhammad Ashad ;
Rahman, Md Muhtadir ;
Rezoana, Noortaz .
PEERJ COMPUTER SCIENCE, 2021,
[4]   Chest x-ray severity score in COVID-19 patients on emergency department admission: a two-centre study [J].
Monaco, Cristian Giuseppe ;
Zaottini, Federico ;
Schiaffino, Simone ;
Villa, Alessandro ;
Della Pepa, Gianmarco ;
Carbonaro, Luca Alessandro ;
Menicagli, Laura ;
Cozzi, Andrea ;
Carriero, Serena ;
Arpaia, Francesco ;
Di Leo, Giovanni ;
Astengo, Davide ;
Rosenberg, Ilan ;
Sardanelli, Francesco .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2020, 4 (01)
[5]   COVID-19 on Chest Radiographs: A Multireader Evaluation of an Artificial Intelligence System [J].
Murphy, Keelin ;
Smits, Henk ;
Knoops, Arnoud J. G. ;
Korst, Michael B. J. M. ;
Samson, Tijs ;
Scholten, Ernst T. ;
Schalekamp, Steven ;
Schaefer-Prokop, Cornelia M. ;
Philipsen, Rick H. H. M. ;
Meijers, Annet ;
Melendez, Jaime ;
van Ginneken, Bram ;
Rutten, Matthieu .
RADIOLOGY, 2020, 296 (03) :E166-E172
[6]   Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19 [J].
Shi, Feng ;
Wang, Jun ;
Shi, Jun ;
Wu, Ziyan ;
Wang, Qian ;
Tang, Zhenyu ;
He, Kelei ;
Shi, Yinghuan ;
Shen, Dinggang .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 :4-15