Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production-From mechanism to catalysts design

被引:76
作者
Jiang, Xiaoli [1 ,2 ]
Li, Wei [1 ,2 ]
Liu, Yanxia [1 ,2 ]
Zhao, Lin [1 ]
Chen, Zhikai [1 ]
Zhang, Lan [3 ]
Zhang, Yagang [1 ,2 ]
Yun, Sining [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Device, Chengdu, Peoples R China
[3] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, INSA Lyon, Villeurbanne, France
[4] Xian Univ Architecture & Technol, Sch Mat Sci & Engn, Xian 710055, Peoples R China
来源
SUSMAT | 2023年 / 3卷 / 01期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
5-hydroxymethylfurfural; catalysts design strategies; electrocatalytic oxidation; pairing reactions; reaction mechanism; ELECTROCHEMICAL OXIDATION; FUEL-CELL; IN-SITU; SELECTIVE OXIDATION; MOLYBDENUM DIOXIDE; BIOMASS; EFFICIENT; NANOSHEETS; WATER; VALORIZATION;
D O I
10.1002/sus2.109
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Catalytic conversion of biomass-based platform chemicals is one of the significant approaches to utilize renewable biomass resources. 2,5-Furandicarboxylic acid (FDCA), obtained by an electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF), has attracted extensive attention due to the potential of replacing terephthalic acid to synthesize high-performance polymeric materials for commercialization. In the present work, the pH-dependent reaction pathways and factors influencing the degree of functional group oxidation are first discussed. Then the reaction mechanism of HMF oxidation is further elucidated using the representative examples. In addition, the emerging catalyst design strategies (defects, interface engineering) used in HMF oxidation are generalized, and structure-activity relationships between the abovementioned strategies and catalysts performance are analyzed. Furthermore, cathode pairing reactions, such as hydrogen evolution reaction, CO2 reduction reaction (CO2RR), oxygen reduction reaction, and thermodynamically favorable organic reactions to lower the cell voltage of the electrolysis system, are discussed. Finally, the challenges and prospects of the electrochemical oxidation of HMF for FDCA are presented, focusing on deeply investigated reaction mechanism, coupling reaction, reactor design, and downstream product separation/purification.
引用
收藏
页码:21 / 43
页数:23
相关论文
共 143 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction** [J].
Bai, Lichen ;
Lee, Seunghwa ;
Hu, Xile .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3095-3103
[3]   Electrocatalytic Oxidation of 5-(Hydroxymethyl)furfural Using High-Surface-Area Nickel Boride [J].
Barwe, Stefan ;
Weidner, Jonas ;
Cychy, Steffen ;
Morales, Dulce M. ;
Dieckhofer, Stefan ;
Hiltrop, Dennis ;
Masa, Justus ;
Muhler, Martin ;
Schuhmann, Wolfgang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (35) :11460-11464
[4]   Electrochemical Oxidation of HMF via Hydrogen Atom Transfer and Hydride Transfer on NiOOH and the Impact of NiOOH Composition [J].
Bender, Michael T. ;
Choi, Kyoung-Shin .
CHEMSUSCHEM, 2022, 15 (13)
[5]   Understanding Hydrogen Atom and Hydride Transfer Processes during Electrochemical Alcohol and Aldehyde Oxidation [J].
Bender, Michael T. ;
Warburton, Robert E. ;
Hammes-Schiffer, Sharon ;
Choi, Kyoung-Shin .
ACS CATALYSIS, 2021, 11 (24) :15110-15124
[6]   Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH [J].
Bender, Michael T. ;
Lam, Yan Choi ;
Hammes-Schiffer, Sharon ;
Choi, Kyoung-Shin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) :21538-21547
[7]   Simultaneous CO2 Reduction and 5-Hydroxymethylfurfural Oxidation to Value-Added Products by Electrocatalysis [J].
Bi, Jiahui ;
Zhu, Qinggong ;
Guo, Weiwei ;
Li, Pengsong ;
Jia, Shuaiqiang ;
Liu, Jiyuan ;
Ma, Jun ;
Zhang, Jianling ;
Liu, Zhimin ;
Han, Buxing .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (24) :8043-8050
[8]   Phosphorus vacancy-engineered Ce-doped CoP nanosheets for the electrocatalytic oxidation of 5-hydroxymethylfurfural [J].
Bi, Jiahui ;
Ying, Hao ;
Xu, Hui ;
Zhao, Xiaoning ;
Du, Xinyun ;
Hao, Jingcheng ;
Li, Zhonghao .
CHEMICAL COMMUNICATIONS, 2022, 58 (56) :7817-7820
[9]   Two-dimensional metal-organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl)furfural (HMF) valorization [J].
Cai, Mengke ;
Zhang, Yawei ;
Zhao, Yiyue ;
Liu, Qinglin ;
Li, Yinle ;
Li, Guangqin .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (39) :20386-20392
[10]   Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles [J].
Chadderdon, David J. ;
Xin, Le ;
Qi, Ji ;
Qiu, Yang ;
Krishna, Phani ;
More, Karren L. ;
Li, Wenzhen .
GREEN CHEMISTRY, 2014, 16 (08) :3778-3786