Variationally consistent Hellmann-Feynman forces in the finite element formulation of Kohn-Sham density functional theory

被引:3
作者
Karaca, K. [1 ]
Temizer, I. [1 ]
机构
[1] Bilkent Univ, Dept Mech Engn, TR-06800 Ankara, Turkiye
关键词
Ab initio molecular dynamics; Kohn-Sham density functional theory; Hellmann-Feynman force; Finite element method; Isogeometric analysis; ELECTRONIC-STRUCTURE CALCULATIONS; INITIO MOLECULAR-DYNAMICS; ISOGEOMETRIC ANALYSIS; TOTAL-ENERGY; ACCURATE; RELAXATION; GEOMETRIES; PARTITION; GRADIENT; VIRIAL;
D O I
10.1016/j.cma.2022.115674
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hellmann-Feynman forces are derived within the numerical framework of the finite element method for density functional theory in the Kohn-Sham formalism. The variational consistency of the force expressions in all-electron and pseudopotential settings are carefully examined, with a particular focus on the implications arising from different representations for interaction terms that are associated with electrostatics. Numerical investigations in nonperiodic systems which range from diatomic molecules to carbon allotropes demonstrate the systematic convergence that is offered by the finite element framework, not only for energy and force but also for geometric configuration and molecular statics parameters. A range of higher-order discretizations employing fixed meshes are invoked within these examples based on classical finite elements as well as on isogeometric analysis. Overall, this work contributes to recent advances which demonstrate the viability of the finite element method for carrying out ab initio molecular dynamics.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:34
相关论文
共 91 条
[1]   The Dalton quantum chemistry program system [J].
Aidas, Kestutis ;
Angeli, Celestino ;
Bak, Keld L. ;
Bakken, Vebjorn ;
Bast, Radovan ;
Boman, Linus ;
Christiansen, Ove ;
Cimiraglia, Renzo ;
Coriani, Sonia ;
Dahle, Pal ;
Dalskov, Erik K. ;
Ekstrom, Ulf ;
Enevoldsen, Thomas ;
Eriksen, Janus J. ;
Ettenhuber, Patrick ;
Fernandez, Berta ;
Ferrighi, Lara ;
Fliegl, Heike ;
Frediani, Luca ;
Hald, Kasper ;
Halkier, Asger ;
Hattig, Christof ;
Heiberg, Hanne ;
Helgaker, Trygve ;
Hennum, Alf Christian ;
Hettema, Hinne ;
Hjertenaes, Eirik ;
Host, Stinne ;
Hoyvik, Ida-Marie ;
Iozzi, Maria Francesca ;
Jansik, Branislav ;
Jensen, Hans Jorgen Aa. ;
Jonsson, Dan ;
Jorgensen, Poul ;
Kauczor, Joanna ;
Kirpekar, Sheela ;
Kjrgaard, Thomas ;
Klopper, Wim ;
Knecht, Stefan ;
Kobayashi, Rika ;
Koch, Henrik ;
Kongsted, Jacob ;
Krapp, Andreas ;
Kristensen, Kasper ;
Ligabue, Andrea ;
Lutnaes, Ola B. ;
Melo, Juan I. ;
Mikkelsen, Kurt V. ;
Myhre, Rolf H. ;
Neiss, Christian .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (03) :269-284
[2]   Orbital-enriched flat-top partition of unity method for the Schrodinger eigenproblem [J].
Albrecht, Clelia ;
Klaar, Constanze ;
Pask, John Ernest ;
Schweitzer, Marc Alexander ;
Sukumar, N. ;
Ziegenhagel, Albert .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 :224-239
[3]   Real-space pseudopotential method for computing the electronic properties of periodic systems [J].
Alemany, MMG ;
Jain, M ;
Kronik, L ;
Chelikowsky, JR .
PHYSICAL REVIEW B, 2004, 69 (07)
[4]  
[Anonymous], 2000, FINITE ELEMENT BOUND
[5]   NWChem: Past, present, and future [J].
Apra, E. ;
Bylaska, E. J. ;
de Jong, W. A. ;
Govind, N. ;
Kowalski, K. ;
Straatsma, T. P. ;
Valiev, M. ;
van Dam, H. J. J. ;
Alexeev, Y. ;
Anchell, J. ;
Anisimov, V ;
Aquino, F. W. ;
Atta-Fynn, R. ;
Autschbach, J. ;
Bauman, N. P. ;
Becca, J. C. ;
Bernholdt, D. E. ;
Bhaskaran-Nair, K. ;
Bogatko, S. ;
Borowski, P. ;
Boschen, J. ;
Brabec, J. ;
Bruner, A. ;
Cauet, E. ;
Chen, Y. ;
Chuev, G. N. ;
Cramer, C. J. ;
Daily, J. ;
Deegan, M. J. O. ;
Dunning, T. H., Jr. ;
Dupuis, M. ;
Dyall, K. G. ;
Fann, G., I ;
Fischer, S. A. ;
Fonari, A. ;
Fruechtl, H. ;
Gagliardi, L. ;
Garza, J. ;
Gawande, N. ;
Ghosh, S. ;
Glaesemann, K. ;
Goetz, A. W. ;
Hammond, J. ;
Helms, V ;
Hermes, E. D. ;
Hirao, K. ;
Hirata, S. ;
Jacquelin, M. ;
Jensen, L. ;
Johnson, B. G. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (18)
[6]   SIMULTANEOUS RELAXATION OF NUCLEAR GEOMETRIES AND ELECTRIC CHARGE-DENSITIES IN ELECTRONIC-STRUCTURE THEORIES [J].
BENDT, P ;
ZUNGER, A .
PHYSICAL REVIEW LETTERS, 1983, 50 (21) :1684-1688
[7]   BINDING REGIONS IN DIATOMIC MOLECULES [J].
BERLIN, T .
JOURNAL OF CHEMICAL PHYSICS, 1951, 19 (02) :208-213
[8]   Structural relaxation made simple [J].
Bitzek, Erik ;
Koskinen, Pekka ;
Gaehler, Franz ;
Moseler, Michael ;
Gumbsch, Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[9]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[10]   Adaptive Finite Element Method for Solving the Exact Kohn-Sham Equation of Density Functional Theory [J].
Bylaska, Eric J. ;
Holst, Michael ;
Weare, John H. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (04) :937-948