Non-Flammable Electrolyte Mediated by Solvation Chemistry toward High-Voltage Lithium-Ion Batteries

被引:70
作者
Cheng, Haoran [1 ,2 ]
Ma, Zheng [1 ]
Kumar, Pushpendra [3 ]
Liang, Honghong [1 ,2 ]
Cao, Zhen [4 ]
Xie, Hongliang [1 ]
Cavallo, Luigi [4 ]
Li, Qian [1 ]
Ming, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Rare Earth Resource Utilizat, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
[4] King Abdullah Univ Sci & Technol KAUST, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金;
关键词
LI-ION; INTERFACIAL MODEL; PERFORMANCE; STABILITY; ADDITIVES; ANODE;
D O I
10.1021/acsenergylett.3c02789
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of nonflammable electrolytes can boost energy density and battery safety, especially for layered metal oxide cathodes operating at high voltage. However, most nonflammable electrolytes are designed in a high concentration for compatibility with graphite electrodes and/or less decomposition. Herein, we introduced a solvation structure-mediated model to develop a nonflammable electrolyte based on trimethyl phosphate (TMP) solvent at a normal concentration. This advancement allows the graphite || lithium cobalt oxide full cell to operate at 4.5 V, delivering high energy density and also exhibiting a nonflammable feature. This achievement is realized using previously unreported components, including carbonate solvent, ethylene sulfate (DTD) additives, and conventional LiPF6 salt. We analyzed the molecular behaviors of each electrolyte composition and also uncovered the unreported impact of DTD, highlighting its prerequisite conditions for effectively weakening the Li+-TMP interactions. This bottom-up design strategy offers a fresh perspective on regulating solvation structures and electrolyte formulations.
引用
收藏
页码:1604 / 1616
页数:13
相关论文
共 56 条
[1]   Revisiting the General Solubility Equation: In Silico Prediction of Aqueous Solubility Incorporating the Effect of Topographical Polar Surface Area [J].
Ali, Jogoth ;
Camilleri, Patrick ;
Brown, Marc B. ;
Hutt, Andrew J. ;
Kirton, Stewart B. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (02) :420-428
[2]   Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes [J].
Borodin, O ;
Smith, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6293-6299
[3]   Microscopic Origin of the Solid Electrolyte Interphase Formation in Fire-Extinguishing Electrolyte: Formation of Pure Inorganic Layer in High Salt Concentration [J].
Bouibes, Amine ;
Takenaka, Norio ;
Saha, Soumen ;
Nagaoka, Masataka .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (19) :5949-5955
[4]   Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases [J].
Cao, Xia ;
Xu, Yaobin ;
Zhang, Linchao ;
Engelhard, Mark H. ;
Zhong, Lirong ;
Ren, Xiaodi ;
Jia, Haiping ;
Liu, Bin ;
Niu, Chaojiang ;
Matthews, Bethany E. ;
Wu, Haiping ;
Arey, Bruce W. ;
Wang, Chongmin ;
Zhang, Ji-Guang ;
Xu, Wu .
ACS ENERGY LETTERS, 2019, 4 (10) :2529-2534
[5]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[6]   Correlating the Solvating Power of Solvents with the Strength of Ion-Dipole Interaction in Electrolytes of Lithium-ion Batteries [J].
Chen, Kean ;
Shen, Xiaohui ;
Luo, Laibing ;
Chen, Hui ;
Cao, Ruoyu ;
Feng, Xiangming ;
Chen, Weihua ;
Fang, Yongjin ;
Cao, Yuliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (47)
[7]   Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries [J].
Cheng, Haoran ;
Sun, Qujiang ;
Li, Leilei ;
Zou, Yeguo ;
Wang, Yuqi ;
Cai, Tao ;
Zhao, Fei ;
Liu, Gang ;
Ma, Zheng ;
Wahyudi, Wandi ;
Li, Qian ;
Ming, Jun .
ACS ENERGY LETTERS, 2022, 7 (01) :490-513
[8]   Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries - II. Full Cell Cycling and Postmortem Analyses [J].
Dagger, Tim ;
Niehoff, Philip ;
Luerenbaum, Constantin ;
Schappacher, Falko M. ;
Winter, Martin .
ENERGY TECHNOLOGY, 2018, 6 (10) :2023-2035
[9]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[10]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+