Strain rate effects on fracture toughness of polymer nanocomposites: A multiscale study

被引:6
作者
Lee, Wonseok [1 ]
Yoo, Taewoo [1 ]
Baek, Kyungmin [2 ]
Cho, Maenghyo [1 ]
Chung, Hayoung [3 ]
Shin, Hyunseong [4 ]
Lee, Yun Seog [1 ]
机构
[1] Seoul Natl Univ, Dept Mech Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Samsung Elect Co Ltd, Mechatron Res, Suwon, South Korea
[3] Ulsan Natl Inst Sci & Technol, Dept Mech Engn, 50 UNIST gil,Eonyang eup,Ulju gun, Ulsan 44919, South Korea
[4] Inha Univ, Dept Mech Engn, 100 Inha Ro, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
Polymer-matrix composites (PMCs); Multiscale modeling; Fracture toughness; Debonding; Toughness; CROSS-LINK DENSITY; TOUGHENING MECHANISMS; SILICA NANOPARTICLES; CARBON NANOTUBES; IMPACT FRACTURE; EPOXY POLYMERS; BEHAVIOR; MATRIX; DEFORMATION; ENHANCEMENT;
D O I
10.1016/j.engfracmech.2024.109924
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We propose a multiscale framework to predict the fracture toughness enhancement in polymer nanocomposites at various strain rates considering the interfacial debonding and subsequent plastic yielding of the matrix mechanisms. The elasto-plastic behavior of pure polymer and polymer nanocomposite is characterized at different strain rates via molecular dynamics simulation, and the fracture toughness enhancement are computed using a multiscale bridging approach via the finite element simulation and linear elastic fracture mechanics. The predicted results show that the toughness enhancement is affected by the strain rate and interfacial characteristics, and that it agrees well with the experimental results. These findings is expected to provide guidelines for predicting the fracture toughness of nanocomposites under various strain rate conditions, as well as insights into the customization of interfacial characteristics for the target toughness.
引用
收藏
页数:19
相关论文
共 57 条
[1]   Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites [J].
Adachi, Tadaharu ;
Osaki, Mayuka ;
Araki, Wakako ;
Kwon, Soon-Chul .
ACTA MATERIALIA, 2008, 56 (09) :2101-2109
[2]   Multiscale study for the temperature effect on the mechanical properties and fatigue crack growth rate of polyamide 66 [J].
Baek, Kyungmin ;
Chung, Ingyun ;
Shin, Hyunseong ;
Cho, Maenghyo .
EXTREME MECHANICS LETTERS, 2021, 43
[3]   Multiscale modeling to evaluate combined effect of covalent grafting and clustering of silica nanoparticles on mechanical behaviors of polyimide matrix composites [J].
Baek, Kyungmin ;
Park, Hyungbum ;
Shin, Hyunseong ;
Yang, Seunghwa ;
Cho, Maenghyo .
COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 206
[4]   Multiscale modeling of mechanical behaviors of Nano-SiC/epoxy nanocomposites with modified interphase model: Effect of nanoparticle clustering [J].
Baek, Kyungmin ;
Shin, Hyunseong ;
Cho, Maenghyo .
COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 203
[5]   Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties [J].
Bandyopadhyay, Ananyo ;
Valavala, Pavan K. ;
Clancy, Thomas C. ;
Wise, Kristopher E. ;
Odegard, Gregory M. .
POLYMER, 2011, 52 (11) :2445-2452
[6]   Measurement of carbon nanotube-polymer interfacial strength [J].
Barber, AH ;
Cohen, SR ;
Wagner, HD .
APPLIED PHYSICS LETTERS, 2003, 82 (23) :4140-4142
[7]   The failure of fibre composites and adhesively bonded fibre composites under high rates of test .3. Mixed-mode I/II and mode II loadings [J].
Blackman, BRK ;
Dear, JP ;
Kinloch, AJ ;
MacGillivray, H ;
Wang, Y ;
Williams, JG ;
Yayla, P .
JOURNAL OF MATERIALS SCIENCE, 1996, 31 (17) :4467-4477
[8]   Molecular response of a glassy polymer to active deformation [J].
Capaldi, FM ;
Boyce, MC ;
Rutledge, GC .
POLYMER, 2004, 45 (04) :1391-1399
[9]   Strain-rate dependent mode I cohesive traction laws for glass fiber-epoxy interphase using molecular dynamics simulations [J].
Chowdhury, Sanjib C. ;
Gillespie, John W., Jr. .
COMPOSITES PART B-ENGINEERING, 2022, 237
[10]   STRUCTURE AND ENERGETICS OF LIGAND-BINDING TO PROTEINS - ESCHERICHIA-COLI DIHYDROFOLATE REDUCTASE TRIMETHOPRIM, A DRUG-RECEPTOR SYSTEM [J].
DAUBEROSGUTHORPE, P ;
ROBERTS, VA ;
OSGUTHORPE, DJ ;
WOLFF, J ;
GENEST, M ;
HAGLER, AT .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1988, 4 (01) :31-47