Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems

被引:1
|
作者
Cui, Tiangang [1 ]
Detommaso, Gianluca [2 ]
Scheichl, Robert [3 ,4 ]
机构
[1] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
[2] Amazon Web Serv Germany GmbH, Krausenstr 38, D-10117 Berlin, Germany
[3] Heidelberg Univ, Inst Appl Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Inst Appl Math, Interdisciplinary Ctr Scient Comp, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
multilevel Monte Carlo; likelihood-informed subspaces; dimension-independent MCMC; inverse problems; STOCHASTIC NEWTON MCMC; MONTE-CARLO METHODS; COMPUTATIONAL FRAMEWORK; APPROXIMATIONS; ERGODICITY;
D O I
10.1088/1361-6420/ad1e2c
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui et al 2016) and the multilevel MCMC (Dodwell et al 2015) to explore the hierarchy of posterior distributions. This integration offers several advantages: First, DILI-MCMC employs an intrinsic likelihood-informed subspace (LIS) (Cui et al 2014)-which involves a number of forward and adjoint model simulations-to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a Rayleigh-Ritz procedure to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Dimension-independent likelihood-informed MCMC
    Cui, Tiangang
    Law, Kody J. H.
    Marzouk, Youssef M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 304 : 109 - 137
  • [2] Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals
    Beskos, Alexandros
    Jasra, Ajay
    Law, Kody
    Marzouk, Youssef
    Zhou, Yan
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 762 - 786
  • [3] Likelihood-informed dimension reduction for nonlinear inverse problems
    Cui, T.
    Martin, J.
    Marzouk, Y. M.
    Solonen, A.
    Spantini, A.
    INVERSE PROBLEMS, 2014, 30 (11)
  • [4] Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction
    Cui, Tiangang
    Marzouk, Youssef
    Willcox, Karen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 315 : 363 - 387
  • [5] Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors
    Vollmer, Sebastian J.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 535 - 561
  • [6] Data-free likelihood-informed dimension reduction of Bayesian inverse problems
    Cui, Tiangang
    Zahm, Olivier
    INVERSE PROBLEMS, 2021, 37 (04)
  • [7] Prior normalization for certified likelihood-informed subspace detection of Bayesian inverse problems
    Cui, Tiangang
    Tong, Xin T.
    Zahm, Olivier
    INVERSE PROBLEMS, 2022, 38 (12)
  • [8] Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems Using MCMC
    Gilavert, Clement
    Moussaoui, Said
    Idier, Jerome
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (01) : 70 - 80
  • [9] A versatile distributed MCMC algorithm for large scale inverse problems
    Thouvenin, Pierre-Antoine
    Repetti, Audrey
    Chainais, Pierre
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2016 - 2020
  • [10] A STOCHASTIC NEWTON MCMC METHOD FOR LARGE-SCALE STATISTICAL INVERSE PROBLEMS WITH APPLICATION TO SEISMIC INVERSION
    Martin, James
    Wilcox, Lucas C.
    Burstedde, Carsten
    Ghattas, Omar
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1460 - A1487