Bivariate Bernstein Chlodovsky Operators Preserving Exponential Functions and Their Convergence Properties

被引:0
|
作者
Acar, Tuncer [1 ]
Bodur, Murat [2 ]
Isikli, Esma [1 ]
机构
[1] Selcuk Univ, Fac Sci, Dept Math, TR-42003 Selcuklu, Konya, Turkiye
[2] Konya Tech Univ, Fac Engn & Nat Sci, Dept Engn Basic Sci, Konya, Turkiye
关键词
Bernstein-Chlodovsky operators; exponential functions; GBS operators; mixed modulus of smoothness; Peetre's K-functional; weighted modulus of continuity; WEIGHTED APPROXIMATION; THEOREM;
D O I
10.1080/01630563.2023.2297439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
his paper is devoted to an extension of the bivariate generalized Bernstein-Chlodovsky operators preserving the exponential function exp (2,2) where exp (alpha,beta)=e(-alpha x-beta y),alpha,beta is an element of R-0(+) and x,y >= 0. For these operators, we first examine the weighted approximation properties for continuous functions in the weighted space, and in the latter case, we also obtain the convergence rate for these operators using a weighted modulus of continuity. Then, we investigate the order of approximation regarding local approximation results via Peetre's K-functional. We introduce the GBS (Generalized Boolean Sum) operators of generalized Bernstein-Chlodovsky operators, and we estimate the degree of approximation in terms of the Lipschitz class of B & ouml;gel continuous functions and the mixed modulus of smoothness. Finally, we provide some numerical and graphical examples with different values to demonstrate the rate of convergence of the constructed operators.
引用
收藏
页码:16 / 37
页数:22
相关论文
共 50 条
  • [31] A family of bivariate rational Bernstein operators
    Zhu, Chun-Gang
    Xia, Bao-Yu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 162 - 171
  • [32] CONSTRUCTION OF THE KANTOROVICH VARIANT OF THE BERNSTEIN-CHLODOVSKY OPERATORS BASED ON PARAMETER α
    Lian, Bo-Yong
    Cai, Qing-Bo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 797 - 810
  • [33] Bernstein Operators for Exponential Polynomials
    Aldaz, J. M.
    Kounchev, O.
    Render, H.
    CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) : 345 - 367
  • [34] Bernstein Operators for Exponential Polynomials
    J. M. Aldaz
    O. Kounchev
    H. Render
    Constructive Approximation, 2009, 29 : 345 - 367
  • [35] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [36] On the Approximation Properties of q-Analogue Bivariate λ-Bernstein Type Operators
    Aliaga, Edmond
    Baxhaku, Behar
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [37] ON THE RATES OF CONVERGENCE OF CHLODOVSKY-DURRMEYER OPERATORS AND THEIR BEZIER VARIANT
    Karsli, Harun
    Pych-Taberska, Paulina
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (04) : 693 - 704
  • [38] Phillips Operators Preserving Arbitrary Exponential Functions, eat, ebt
    Gupta, Vijay
    Lopez-Moreno, Antonio-Jesus
    FILOMAT, 2018, 32 (14) : 5071 - 5082
  • [39] Shape Preserving Properties for q-Bernstein-Stancu Operators
    Wang, Yali
    Zhou, Yinying
    JOURNAL OF MATHEMATICS, 2014, 2014
  • [40] Bernstein-Kantorovich operators, approximation and shape preserving properties
    Acu, Ana-Maria
    Rasa, Ioan
    Steopoaie, Ancuta Emilia
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)