COVID-Attention: Efficient COVID19 Detection Using Pre-trained Deep Models Based on Vision Transformers and X-ray Images

被引:1
|
作者
Haouli, Imed-Eddine [1 ]
Hariri, Walid [1 ]
Seridi-Bouchelaghem, Hassina [1 ]
机构
[1] Badji Mokhtar Annaba Univ, Labged Lab, BP12, Annaba 23000, Algeria
关键词
COVID19; CNN; vison transformer; self-attention mechanism;
D O I
10.1142/S021821302350046X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
COVID19 is becoming more and more threatening to human life since the appearance of many variants like Alpha, Omicron and Delta. These variants have dozens of mutations that can make their diagnosis more challenging. Despite the recent success of Convolutional Neural Networks (CNN) to detect COVID19 automatically using transfer learning techniques, they are not the most robust to accomplish this task since some translation, scale and hyperparameter variations can affect the accuracy. Newly, Vision Transformers (ViT) are becoming increasingly popular to handle similar tasks and to deal with the aforementioned variations. In this paper, we propose an enhanced ViT architecture for COVID19 detection referred to as COVID-Attention. The proposed ViT-based models are robust due to their capability to capture long-range dependencies within images thanks to the attention mechanism, which is the core of the transformer block. We compare the efficiency of our proposed method to top-performing CNN baselines using two different transfer learning modes. We further show in our experiments that adding a convolution block to the top of the ViT model (i.e. as an initial block) can avoid the collapse issue and enhance the ViT performance using the recent ViT(C )model. We finally show that ViT-based models give more explainable visualization compared to CNN models using the Grad-CAM technique in order to highlight the attention map that affects the classification decision. Our experiments have been conducted on two recent databases of X-ray images and show high performance compared to the state-of-the-art methods in three-class classifications.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Deep learning based detection of COVID-19 from chest X-ray images
    Sarra Guefrechi
    Marwa Ben Jabra
    Adel Ammar
    Anis Koubaa
    Habib Hamam
    Multimedia Tools and Applications, 2021, 80 : 31803 - 31820
  • [22] Detecting COVID-19 in chest CT images based on several pre-trained models
    Hassan, Esraa
    Shams, Mahmoud Y.
    Hikal, Noha A.
    Elmougy, Samir
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 65267 - 65287
  • [23] Deep learning based detection of COVID-19 from chest X-ray images
    Guefrechi, Sarra
    Ben Jabra, Marwa
    Ammar, Adel
    Koubaa, Anis
    Hamam, Habib
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31803 - 31820
  • [24] Detection of COVID-19 using deep learning on x-ray lung images
    Odeh, AbdAlRahman
    Alomar, Ayah
    Aljawarneh, Shadi
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [25] Detection of COVID-19 using deep learning on x-ray lung images
    Odeh, Abd AlRahman
    Alomar, Ayah
    Aljawarneh, Shadi
    PeerJ Computer Science, 2022, 8
  • [26] Federated Learning Approach with Pre-Trained Deep Learning Models for COVID-19 Detection from Unsegmented CT images
    Florescu, Lucian Mihai
    Streba, Costin Teodor
    Serbanescu, Mircea-Sebastian
    Mamuleanu, Madalin
    Florescu, Dan Nicolae
    Teica, Rossy Vladut
    Nica, Raluca Elena
    Gheonea, Ioana Andreea
    LIFE-BASEL, 2022, 12 (07):
  • [27] Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models
    Zouch, Wassim
    Sagga, Dhouha
    Echtioui, Amira
    Khemakhem, Rafik
    Ghorbel, Mohamed
    Mhiri, Chokri
    Ben Hamida, Ahmed
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (07) : 825 - 835
  • [28] Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models
    Wassim Zouch
    Dhouha Sagga
    Amira Echtioui
    Rafik Khemakhem
    Mohamed Ghorbel
    Chokri Mhiri
    Ahmed Ben Hamida
    Annals of Biomedical Engineering, 2022, 50 : 825 - 835
  • [29] Deep Transfer Learning Based Unified Framework for COVID19 Classification and Infection Detection from Chest X-Ray Images
    Sankar Ganesh Sundaram
    Saleh Abdullah Aloyuni
    Raed Abdullah Alharbi
    Tariq Alqahtani
    Mohamed Yacin Sikkandar
    Chidambaram Subbiah
    Arabian Journal for Science and Engineering, 2022, 47 : 1675 - 1692
  • [30] Deep Transfer Learning Based Unified Framework for COVID19 Classification and Infection Detection from Chest X-Ray Images
    Sundaram, Sankar Ganesh
    Aloyuni, Saleh Abdullah
    Alharbi, Raed Abdullah
    Alqahtani, Tariq
    Sikkandar, Mohamed Yacin
    Subbiah, Chidambaram
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 1675 - 1692