Densely Connected U-Net With Criss-Cross Attention for Automatic Liver Tumor Segmentation in CT Images

被引:7
|
作者
Li, Qiang [1 ]
Song, Hong [1 ]
Wei, Zenghui [1 ]
Yang, Fengbo [1 ]
Fan, Jingfan [2 ]
Ai, Danni [2 ]
Lin, Yucong [3 ]
Yu, Xiaoling [4 ]
Yang, Jian [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Opt & Elect, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[4] Chinese Peoples Liberat Army Gen Hosp, Dept Intervent Ultrasound, Beijing 100853, Peoples R China
基金
中国国家自然科学基金;
关键词
Dense interconnection; criss-cross attention; U-Net; liver tumor segmentation; CT images;
D O I
10.1109/TCBB.2022.3198425
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Automatic liver tumor segmentation plays a key role in radiation therapy of hepatocellular carcinoma. In this paper, we propose a novel densely connected U-Net model with criss-cross attention (CC-DenseUNet) to segment liver tumors in computed tomography (CT) images. The dense interconnections in CC-DenseUNet ensure the maximum information flow between encoder layers when extracting intra-slice features of liver tumors. Moreover, the criss-cross attention is used in CC-DenseUNet to efficiently capture only the necessary and meaningful non-local contextual information of CT images containing liver tumors. We evaluated the proposed CC-DenseUNet on the LiTS dataset and the 3DIRCADb dataset. Experimental results show that the proposed method reaches the state-of-the-art performance for liver tumor segmentation. We further experimentally demonstrate the robustness of the proposed method on a clinical dataset comprising 20 CT volumes.
引用
收藏
页码:3399 / 3410
页数:12
相关论文
共 50 条
  • [1] Dual attention U-net for liver tumor segmentation in CT images
    Alirr, Omar Ibrahim
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (02)
  • [2] A DENSELY CONNECTED ATTENTION SPATIOTEMPORAL U-NET FOR KIDNEY AND RENAL ARTERY SEGMENTATION IN CT IMAGES
    Li, Bei
    Xu, Guanping
    Shen, Dongfang
    Zheng, Song
    Chen, Jianhui
    Chen, Yinran
    Luo, Xiongbiao
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [3] Attention Convolutional U-Net for Automatic Liver Tumor Segmentation
    Bibi, Asima
    Khan, Muhammad Salman
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 102 - 107
  • [4] Automatic Lumbar Spinal CT Image Segmentation With a Dual Densely Connected U-Net
    Tang, He
    Pei, Xiaobing
    Huang, Shilong
    Li, Xin
    Liu, Chao
    IEEE ACCESS, 2020, 8 (08) : 89228 - 89238
  • [5] RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images
    Jiang, Linfeng
    Ou, Jiajie
    Liu, Ruihua
    Zou, Yangyang
    Xie, Ting
    Xiao, Hanguang
    Bai, Ting
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [6] DC2U-Net: Tract Segmentation in Brain White Matter Using Dense Criss-Cross U-Net
    Yin, Haoran
    Xu, Pengbo
    Cui, Hui
    Chen, Geng
    Ma, Jiquan
    COMPUTATIONAL DIFFUSION MRI (CDMRI 2022), 2022, 13722 : 115 - 124
  • [7] Automatic Skeleton Segmentation in CT Images Based on U-Net
    Milara, Eva
    Gomez-Grande, Adolfo
    Sarandeses, Pilar
    Seiffert, Alexander P.
    Gomez, Enrique J.
    Sanchez-Gonzalez, Patricia
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (05): : 2390 - 2400
  • [8] Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
    Wang, Jinke
    Zhang, Xiangyang
    Lv, Peiqing
    Wang, Haiying
    Cheng, Yuanzhi
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (06) : 1479 - 1493
  • [9] Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
    Wang, Jinke
    Zhang, Xiangyang
    Lv, Peiqing
    Wang, Haiying
    Cheng, Yuanzhi
    CANCER MANAGEMENT AND RESEARCH, 2022, 14 : 1479 - 1493
  • [10] Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
    Jinke Wang
    Xiangyang Zhang
    Peiqing Lv
    Haiying Wang
    Yuanzhi Cheng
    Journal of Digital Imaging, 2022, 35 (6) : 1479 - 1493