Unsupervised Classification of Congenital Inner Ear Malformations Using DeepDiffusion for Latent Space Representation

被引:1
作者
Diez, Paula Lopez [1 ]
Margeta, Jan [3 ,4 ]
Diab, Khassan [5 ]
Patou, Francois [2 ]
Paulsen, Rasmus R. [1 ]
机构
[1] Tech Univ Denmark, DTU Comp, Lyngby, Denmark
[2] Oticon Med Res & Technol, Smorum, Denmark
[3] Oticon Med Res & Technol, Vallauris, France
[4] KardioMe, Res & Dev, Nova Dubnica, Slovakia
[5] Tashkent Int Clin, Tashkent, Uzbekistan
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT V | 2023年 / 14224卷
关键词
Unsupervised; Classification; DeepDiffusion; Inner Ear;
D O I
10.1007/978-3-031-43904-9_63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of congenital inner ear malformations is a challenging task even for experienced clinicians. In this study, we present the first automated method for classifying congenital inner ear malformations. We generate 3D meshes of the cochlear structure in 364 normative and 107 abnormal anatomies using a segmentation model trained exclusively with normative anatomies. Given the sparsity and natural unbalance of such datasets, we use an unsupervised method for learning a feature representation of the 3D meshes using DeepDiffusion. In this approach, we use the PointNet architecture for the network-based unsupervised feature learning and combine it with the diffusion distance on a feature manifold. This unsupervised approach captures the variability of the different cochlear shapes and generates clusters in the latent space which faithfully represent the variability observed in the data. We report a mean average precision of 0.77 over the seven main pathological subgroups diagnosed by an ENT (Ear, Nose, and Throat) surgeon specialized in congenital inner ear malformations.
引用
收藏
页码:652 / 662
页数:11
相关论文
共 23 条
[11]  
MONAI Consortium, 2022, Zenodo
[12]   Shape-similarity search of 3D models by using enhanced shape functions [J].
Ohbuchi, Ryutarou ;
Minamitani, Takahiro ;
Takei, Tsuyoshi .
INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2005, 23 (2-4) :70-85
[13]  
Onga Y, 2019, IEEE INT CONF BIG DA, P3764, DOI 10.1109/BigData47090.2019.9006364
[14]  
Pal A, 2021, IEEE ACCESS, V9, P53266, DOI [10.1109/ACCESS.2021.3069346, 10.1109/access.2021.3069346]
[15]  
Paludetti G, 2012, ACTA OTORHINOLARYNGO, V32, P347
[16]  
Paszke A, 2019, ADV NEUR IN, V32
[17]   PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation [J].
Qi, Charles R. ;
Su, Hao ;
Mo, Kaichun ;
Guibas, Leonidas J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :77-85
[18]   Accurate Localization of Inner Ear Regions of Interests Using Deep Reinforcement Learning [J].
Radutoiu, Ana-Teodora ;
Patou, Francois ;
Margeta, Jan ;
Paulsen, Rasmus R. ;
Diez, Paula Lopez .
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 :416-424
[19]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[20]   Deep metric learning for otitis media classification [J].
Sundgaard, Josefine Vilsboll ;
Harte, James ;
Bray, Peter ;
Laugesen, Soren ;
Kamide, Yosuke ;
Tanaka, Chiemi ;
Paulsen, Rasmus R. ;
Christensen, Anders Nymark .
MEDICAL IMAGE ANALYSIS, 2021, 71