It Takes Two to Tango: Controlling Human Mesenchymal Stromal Cell Response via Substrate Stiffness and Surface Topography

被引:4
作者
Ribeiro, Sofia [1 ,2 ,3 ]
Watigny, Alexandre [4 ,5 ]
Bayon, Yves [1 ]
Biggs, Manus [3 ]
Zeugolis, Dimitrios I. [2 ,3 ,4 ,5 ]
机构
[1] Medtronic, Sofradim Prod, Trevoux, France
[2] Univ Galway, Regenerat Modular & Dev Engn Lab REMODEL, Galway, Ireland
[3] Univ Galway, Sci Fdn Ireland SFI Res, Ctr Med Devices CURAM, Galway, Ireland
[4] Univ Coll Dublin UCD, Regenerat Modular & Dev Engn Lab REMODEL, Charles Inst Dermatol, Conway Inst Biomol & Biomed Res, D04 V1W8, Dublin, Ireland
[5] Univ Coll Dublin UCD, Sch Mech & Mat Engn, Dublin D04V 1W8, Ireland
来源
ADVANCED NANOBIOMED RESEARCH | 2024年 / 4卷 / 01期
基金
欧洲研究理事会; 欧盟地平线“2020”; 爱尔兰科学基金会;
关键词
differentiation; human mesenchymal stromal cells; mechanotransduction; stiffness; topography; ENHANCED OSTEOGENIC DIFFERENTIATION; EXTRACELLULAR-MATRIX STIFFNESS; STEM-CELLS; SELF-RENEWAL; IN-VITRO; NEURONAL DIFFERENTIATION; ARCHITECTURAL CONTROL; CYTOSKELETAL TENSION; MECHANICAL MEMORY; CONTACT GUIDANCE;
D O I
10.1002/anbr.202300042
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cells sense extracellular matrix-induced biophysical signals, which are transduced into intracellular signaling cascades, and trigger a series of cell responses, including adhesion, migration, and lineage commitment. Traditionally, in in vitro context, monofactorial approaches are employed to control cell fate, despite the fact that in vivo cells are exposed simultaneously to a diverse range of signals. Herein, an overview of key mechanotransduction pathways is first provided. Conventional single-factor and contemporary multifactorial methodologies, based on substrate rigidity and surface topography, are then reviewed to recapitulate in vitro the in vivo niche, in an attempt to elucidate the underlying mechanisms involved in human mesenchymal stromal cell-material interactions. Cells sense extracellular matrix-induced biophysical signals, which are transduced into intracellular signaling cascades, and trigger a series of cell responses, including adhesion, migration, and lineage commitment. Herein, key mechanotransduction pathways associated with surface topography and substrate stiffness in mesenchymal stromal cells culture are discussed.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:15
相关论文
共 50 条
[21]   Improvement of Mesenchymal Stromal Cell Proliferation and Differentiation via Decellularized Extracellular Matrix on Substrates With a Range of Surface Chemistries [J].
Yang, Michael C. ;
O'Connor, Andrea J. ;
Kalionis, Bill ;
Heath, Daniel E. .
FRONTIERS IN MEDICAL TECHNOLOGY, 2022, 4
[22]   Chemical nanoroughening of Ti40Nb surfaces and its effect on human mesenchymal stromal cell response [J].
Helth, A. ;
Gostin, P. F. ;
Oswald, S. ;
Wendrock, H. ;
Wolff, U. ;
Hempel, U. ;
Arnhold, S. ;
Calin, M. ;
Eckert, J. ;
Gebert, A. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (01) :31-41
[23]   Peptoid-Cross-Linked Hydrogel Stiffness Modulates Human Mesenchymal Stromal Cell Immunoregulatory Potential in the Presence of Interferon-Gamma [J].
Castilla-Casadiego, David A. ;
Morton, Logan D. ;
Loh, Darren H. ;
Pineda-Hernandez, Aldaly ;
Chavda, Ajay P. ;
Garcia, Francis ;
Rosales, Adrianne M. .
MACROMOLECULAR BIOSCIENCE, 2024, 24 (07)
[24]   Mussel-Inspired Modification of Nanofibers for REST siRNA Delivery: Understanding the Effects of Gene-Silencing and Substrate Topography on Human Mesenchymal Stem Cell Neuronal Commitment [J].
Low, Wei Ching ;
Rujitanaroj, Pim-On ;
Lee, Dong-Keun ;
Kuang, Jinghao ;
Messersmith, Phillip B. ;
Chan, Jerry Kok Yen ;
Chew, Sing Yian .
MACROMOLECULAR BIOSCIENCE, 2015, 15 (10) :1457-1468
[25]   Analysis of osteoblastic gene expression in the early human mesenchymal cell response to a chemically modified implant surface: an in vitro study [J].
Mamalis, Anastasios A. ;
Silvestros, Spyridon S. .
CLINICAL ORAL IMPLANTS RESEARCH, 2011, 22 (05) :530-537
[26]   Cell behavior of human mesenchymal stromal cells in response to silica/collagen based xerogels and calcium deficient culture conditions [J].
Wagner, Alena-Svenja ;
Glenske, Kristina ;
Henss, Anja ;
Kruppke, Benjamin ;
Roessler, Sina ;
Hanke, Thomas ;
Moritz, Andreas ;
Rohnke, Marcus ;
Kressin, Monika ;
Arnhold, Stefan ;
Schnettler, Reinhard ;
Wenisch, Sabine .
BIOMEDICAL MATERIALS, 2017, 12 (04)
[27]   In vitro allogeneic immune cell response to mesenchymal stromal cells derived from human adipose in patients with rheumatoid arthritis [J].
Shalini, P. Usha ;
Vidyasagar, J. V. S. ;
Kona, Lakshmi Kumari ;
Ponnana, Meenakshi ;
Chelluri, Lakshmi Kiran .
CELLULAR IMMUNOLOGY, 2017, 314 :18-25
[28]   Human umbilical cord mesenchymal stromal cells attenuate pulmonary fibrosis via regulatory T cell through interaction with macrophage [J].
Tang, Zan ;
Gao, Junxiao ;
Wu, Jie ;
Zeng, Guifang ;
Liao, Yan ;
Song, Zhenkun ;
Liang, Xiao ;
Hu, Junyuan ;
Hu, Yong ;
Liu, Muyun ;
Li, Nan .
STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
[29]   Proteomic analysis of the human amniotic mesenchymal stromal cell secretome by integrated approaches via filter-aided sample preparation [J].
Muntiu, Alexandra ;
Papait, Andrea ;
Vincenzoni, Federica ;
Rossetti, Diana Valeria ;
Romele, Pietro ;
Cargnoni, Anna ;
Silini, Antonietta ;
Parolini, Ornella ;
Desiderio, Claudia .
JOURNAL OF PROTEOMICS, 2025, 310
[30]   Human Umbilical Cord Mesenchymal Stromal Cell-Derived Microvesicles Express Surface Markers Identical to the Phenotype of Parental Cells [J].
Romanov, Yu. A. ;
Volgina, N. E. ;
Dugina, T. N. ;
Kabaeva, N. V. ;
Sukhikh, G. T. .
BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2018, 166 (01) :124-129