What Is the Rate-Limiting Step of Oxygen Reduction Reaction on Fe-N-C Catalysts?

被引:67
|
作者
Yu, Saerom [1 ,2 ]
Levell, Zachary [1 ,2 ]
Jiang, Zhou [1 ,2 ]
Zhao, Xunhua [1 ,2 ]
Liu, Yuanyue [1 ,2 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
NITROGEN-CARBON CATALYSTS; FREE-ENERGY; FUEL-CELLS; METAL; IRON; PERFORMANCE; ELECTROCATALYSTS; SIMULATION; DYNAMICS; SITES;
D O I
10.1021/jacs.3c09193
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxygen reduction reaction (ORR) is essential to various renewable energy technologies. An important catalyst for ORR is single iron atoms embedded in nitrogen-doped graphene (Fe-N-C). However, the rate-limiting step of the ORR on Fe-N-C is unknown, significantly impeding understanding and improvement. Here, we report the activation energies of all of the steps, calculated by ab initio molecular dynamics simulations under constant electrode potential. In contrast to the common belief that a hydrogenation step limits the reaction rate, we find that the rate-limiting step is oxygen molecule replacing adsorbed water on Fe. This occurs through concerted motion of H2O desorption and O-2 adsorption, without leaving the site bare. Interestingly, despite being an apparent "thermal" process that is often considered to be potential-independent, the barrier reduces with the electrode potential. This can be explained by stronger Fe-O-2 binding and weaker Fe-H2O binding at a lower potential, due to O-2 gaining electrons and H2O donating electrons to the catalyst. Our study offers new insights into the ORR on Fe-N-C and highlights the importance of kinetic studies in heterogeneous electrochemistry.
引用
收藏
页码:25352 / 25356
页数:5
相关论文
共 50 条
  • [1] Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction
    Ma, Qianli
    Jin, Huihui
    Zhu, Jiawei
    Li, Zilan
    Xu, Hanwen
    Liu, Bingshuai
    Zhang, Zhiwei
    Ma, Jingjing
    Mu, Shichun
    ADVANCED SCIENCE, 2021, 8 (23)
  • [2] Recent advances of Fe-N-C pyrolyzed catalysts for the oxygen reduction reaction
    Munoz-Becerra, Karina
    Venegas, Ricardo
    Duque, Luis
    Heraclito Zagal, Jose
    Javier Recio, Francisco
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 23 : 154 - 161
  • [3] Research progress of Fe-N-C catalysts for the electrocatalytic oxygen reduction reaction
    Wang, Ying
    Wang, Lei
    Fu, Honggang
    SCIENCE CHINA-MATERIALS, 2022, 65 (07) : 1701 - 1722
  • [4] WHAT IS THE RATE-LIMITING STEP OF A MULTISTEP REACTION
    MURDOCH, JR
    JOURNAL OF CHEMICAL EDUCATION, 1981, 58 (01) : 32 - 36
  • [5] Regulation Strategies for Fe-N-C and Co-N-C Catalysts for the Oxygen Reduction Reaction
    Qu, Ximing
    Yan, Yani
    Zhang, Zeling
    Tian, Benjun
    Yin, Shuhu
    Cheng, Xiaoyang
    Huang, Rui
    Jiang, Yanxia
    Sun, Shigang
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (32)
  • [6] A Stabilized Assisted Method for the Synthesis of Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Maouche, Chanez
    Zhou, Yazhou
    Li, Bing
    Cheng, Chao
    Wu, Zirui
    Han, Xue
    Rao, Shaosheng
    Li, Yi
    Rahman, Nasir
    Yang, Juan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
  • [7] Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Lian, Yuebin
    Xu, Jinnan
    Zhou, Wangkai
    Lin, Yao
    Bai, Jirong
    MOLECULES, 2024, 29 (04):
  • [8] Multiscale porous Fe-N-C networks as highly efficient catalysts for the oxygen reduction reaction
    Li, Ying
    Liu, Tong
    Yang, Wenxiu
    Zhu, Zhijun
    Zhai, Yanling
    Gu, Wenling
    Zhu, Chengzhou
    NANOSCALE, 2019, 11 (41) : 19506 - 19511
  • [9] Potential-Dependent Active Moiety of Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Liu, Kang
    Fu, Junwei
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Zhu, Li
    Wang, Ye
    Lin, Zhang
    Sun, Yifei
    Cortes, Emiliano
    Liu, Min
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (15): : 3749 - 3756
  • [10] Laser driven generation of single atom Fe-N-C catalysts for the oxygen reduction reaction
    Madrid, Ainhoa
    Tolosana-Moranchel, Alvaro
    Garcia, Alvaro
    Rojas, Sergio
    Bartolome, Fernando
    Pakrieva, Ekaterina
    Simonelli, Laura
    Martinez, Gema
    Hueso, Jose L.
    Santamaria, Jesus
    CHEMICAL ENGINEERING JOURNAL, 2024, 498