Group penalized logistic regression differentiates between benign and malignant ovarian tumors

被引:0
|
作者
Hu, Xuemei [1 ,2 ]
Xie, Ying [3 ]
Yang, Yanlin [4 ]
Jiang, Huifeng [5 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R China
[3] Chongqing Vocat Coll Sci & Technol, Gen Natl Def Educ Coll, Chongqing 400037, Peoples R China
[4] Chongqing Univ, Sch Econ & Business Adm, Chongqing 400044, Peoples R China
[5] Chongqing Technol & Business Univ, Res Ctr Econ Upper Reaches Yangtse River, Chongqing 400067, Peoples R China
关键词
Ovarian cancer; GCD algorithm; GLASSO/GSCAD/GMCP penalty; Machine learning methods; Deep learning methods; VARIABLE SELECTION; CANCER; CA125; HE-4; ROMA;
D O I
10.1007/s00500-023-09231-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ovarian cancer is one of the most common types of cancer in women. Correct differentiation between benign and malignant ovarian tumors is of immense importance in medical fields. In this paper, we introduce group penalized logistic regressions to enhance diagnosis accuracy. Firstly, we divide 349 ovarian cancer patients into two sets: one for learning model parameters, and the other for assessing prediction performance, and select 46 variables from 49 traits as the predictor vector to construct GLASSO/GSCAD/GMCP penalized logistic regressions with 11 groups. Secondly, we develop group coordinate descent (GCD) algorithm and its specific pseudo code to simultaneously complete group selection and group estimation, introduce the tenfold cross validation (CV) procedure to select the relatively optimal tuning parameter, and apply the testing set and Youden index to obtain class probability estimator and class index information. Finally, we compute the accuracy, precision, specificity, sensitivity, F1-score and the area under ROC curve (AUC) to assess the prediction performance to the proposed group penalized methods, and found that GLASSO/GSCAD/GMCP penalized logistic regressions outperform three machine learning methods (ANN, artificial neural network; SVM, support vector machine; XGBoost, eXtreme gradient boosting) and three deep learning methods (CNN, convolutional neural network; DNN, deep neural network; RNN, recurrent neural network) in terms of accuracy, F1-score and AUC.
引用
收藏
页码:18565 / 18584
页数:20
相关论文
共 50 条
  • [31] IMMULITE® OM-MA assay:: A useful diagnostic tool in patients with benign and malignant ovarian tumors
    Gebauer, G
    Rieger, M
    Jäger, W
    Lang, N
    ANTICANCER RESEARCH, 1999, 19 (4A) : 2535 - 2536
  • [32] Ultrasound Features Improve Diagnostic Performance of Ovarian Cancer Predictors in Distinguishing Benign and Malignant Ovarian Tumors
    Chen, Yong-ning
    Ma, Fei
    Zhang, Ya-di
    Chen, Li
    Li, Chan-yuan
    Gong, Shi-peng
    CURRENT MEDICAL SCIENCE, 2020, 40 (01) : 184 - 191
  • [33] Diagnostic Performance of Ultrasonography-Based Risk Models in Differentiating Between Benign and Malignant Ovarian Tumors in a US Cohort
    Yoeli-Bik, Roni
    Longman, Ryan E.
    Wroblewski, Kristen
    Weigert, Melanie
    Abramowicz, Jacques S.
    Lengyel, Ernst
    JAMA NETWORK OPEN, 2023, 6 (07) : E2323289
  • [34] Comparing the Copenhagen Index (CPH-I) and Risk of Ovarian Malignancy Algorithm (ROMA): Two equivalent ways to differentiate malignant from benign ovarian tumors before surgery?
    Yoshida, Adriana
    Derchain, Sophie Francoise
    Pitta, Denise Rocha
    Lucci De Angelo Andrade, Liliana Aparecida
    Sarian, Luis Otavio
    GYNECOLOGIC ONCOLOGY, 2016, 140 (03) : 481 - 485
  • [35] RMI and ROMA are equally effective in discriminating between benign and malignant gynecological tumors: A prospective population-based study
    Liest, Ann-Lisbeth
    Omran, Ahmed Shaker
    Mikiver, Rasmus
    Rosenberg, Per
    Uppugunduri, Srinivas
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2019, 98 (01) : 24 - 33
  • [36] Proteomic Analysis of Serum of Women with Elevated Ca-125 to Differentiate Malignant from Benign Ovarian Tumors
    Li, Li
    Xu, Yi
    Yu, Chun-Xia
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2012, 13 (07) : 3265 - 3270
  • [37] Clinicopathological study of metallothionein immunohistochemical expression, in benign, borderline and malignant ovarian epithelial tumors
    Zagorianakou, N
    Stefanou, D
    Makrydimas, G
    Zagorianakou, P
    Briasoulis, E
    Karavasilis, V
    Pavlidis, N
    Agnantis, NJ
    HISTOLOGY AND HISTOPATHOLOGY, 2006, 21 (4-6) : 341 - 347
  • [38] p14 expression differences in ovarian benign, borderline and malignant epithelial tumors
    Vinicius Duarte Cabral
    Marcelle Reesink Cerski
    Ivana Trindade Sa Brito
    Lucia Maria Kliemann
    Journal of Ovarian Research, 9
  • [39] The diagnostic value of magnetic resonance imaging in differentiating benign and malignant pediatric ovarian tumors
    Janssen, Carlijn L.
    Littooij, Annemieke S.
    Fiocco, Marta
    Huige, Josephine C. B.
    de Krijger, Ronald R.
    Hulsker, Caroline C. C.
    Goverde, Angelique J.
    Zsiros, Jozsef
    Mavinkurve-Groothuis, Annelies M. C.
    PEDIATRIC RADIOLOGY, 2021, 51 (03) : 427 - 434
  • [40] Prediction of benign and malignant ovarian tumors using Resnet34 on ultrasound images
    Miao, Kuo
    Zhao, Ning
    Lv, Qian
    He, Xin
    Xu, Mingda
    Dong, Xiaoqiu
    Li, Dandan
    Shao, Xiaohui
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH, 2023, 49 (12) : 2910 - 2917