Group penalized logistic regression differentiates between benign and malignant ovarian tumors

被引:0
|
作者
Hu, Xuemei [1 ,2 ]
Xie, Ying [3 ]
Yang, Yanlin [4 ]
Jiang, Huifeng [5 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R China
[3] Chongqing Vocat Coll Sci & Technol, Gen Natl Def Educ Coll, Chongqing 400037, Peoples R China
[4] Chongqing Univ, Sch Econ & Business Adm, Chongqing 400044, Peoples R China
[5] Chongqing Technol & Business Univ, Res Ctr Econ Upper Reaches Yangtse River, Chongqing 400067, Peoples R China
关键词
Ovarian cancer; GCD algorithm; GLASSO/GSCAD/GMCP penalty; Machine learning methods; Deep learning methods; VARIABLE SELECTION; CANCER; CA125; HE-4; ROMA;
D O I
10.1007/s00500-023-09231-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ovarian cancer is one of the most common types of cancer in women. Correct differentiation between benign and malignant ovarian tumors is of immense importance in medical fields. In this paper, we introduce group penalized logistic regressions to enhance diagnosis accuracy. Firstly, we divide 349 ovarian cancer patients into two sets: one for learning model parameters, and the other for assessing prediction performance, and select 46 variables from 49 traits as the predictor vector to construct GLASSO/GSCAD/GMCP penalized logistic regressions with 11 groups. Secondly, we develop group coordinate descent (GCD) algorithm and its specific pseudo code to simultaneously complete group selection and group estimation, introduce the tenfold cross validation (CV) procedure to select the relatively optimal tuning parameter, and apply the testing set and Youden index to obtain class probability estimator and class index information. Finally, we compute the accuracy, precision, specificity, sensitivity, F1-score and the area under ROC curve (AUC) to assess the prediction performance to the proposed group penalized methods, and found that GLASSO/GSCAD/GMCP penalized logistic regressions outperform three machine learning methods (ANN, artificial neural network; SVM, support vector machine; XGBoost, eXtreme gradient boosting) and three deep learning methods (CNN, convolutional neural network; DNN, deep neural network; RNN, recurrent neural network) in terms of accuracy, F1-score and AUC.
引用
收藏
页码:18565 / 18584
页数:20
相关论文
共 50 条
  • [21] Comparison of 'pattern recognition' and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross validation
    Valentin, L
    Hagen, B
    Tingulstad, S
    Eik-Nes, S
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2001, 18 (04) : 357 - 365
  • [22] The associations between serum VEGF, bFGF and endoglin levels with microvessel density and expression of proangiogenic factors in malignant and benign ovarian tumors
    Szubert, Sebastian
    Moszynski, Rafal
    Michalak, Slawomir
    Nowicki, Michal
    Sajdak, Stefan
    Szpurek, Dariusz
    MICROVASCULAR RESEARCH, 2016, 107 : 91 - 96
  • [23] Peripheral Blood Serum NMR Metabolomics Is a Powerful Tool to Discriminate Benign and Malignant Ovarian Tumors
    Nunes, Sofia C.
    Sousa, Joana
    Silva, Fernanda
    Silveira, Margarida
    Guimaraes, Antonio
    Serpa, Jacinta
    Felix, Ana
    Goncalves, Luis G.
    METABOLITES, 2023, 13 (09)
  • [24] Contrast-Enhanced Ultrasonography in Differential Diagnosis of Benign and Malignant Ovarian Tumors
    Qiao, Jing-Jing
    Yu, Jing
    Yu, Zhe
    Li, Na
    Song, Chen
    Li, Man
    PLOS ONE, 2015, 10 (03):
  • [25] New sonographic morphology score for the differentiation of malignant from benign ovarian tumors
    Shen, Zhi Yong
    He, Ai Qin
    Xia, Gan Lin
    Wu, Ming Feng
    Li, Jun
    Ding, Yong Sheng
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH, 2016, 42 (08) : 1000 - 1012
  • [26] Comparison of glutaminase and cancer antigen 125 for distinguishing benign and malignant ovarian tumors
    Winarno, Gatot Nyarumenteng Adhipurnawan
    Effendi, Jusuf Sulaeman
    Harsono, Ali Budi
    Salima, Siti
    Darwizar, Bagja Dumas
    Sasotya, R. M. Sonny
    Rachmawati, Anita
    Mulyantari, Ayu Insafi
    Trianasari, Nurvita
    Handono, Budi
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2023, 16 (11): : 2144 - 2152
  • [27] Clinical and ultrasound features of benign, borderline, and malignant invasive mucinous ovarian tumors
    Pascual, A.
    Guerriero, S.
    Rams, N.
    Juez, L.
    Ajossa, S.
    Graupera, B.
    Hereter, L.
    Cappai, A.
    Pero, M.
    Perniciano, M.
    Errasti, T.
    Parra, J.
    Solis, M.
    Alcazar, J. L.
    EUROPEAN JOURNAL OF GYNAECOLOGICAL ONCOLOGY, 2017, 38 (03) : 382 - 386
  • [28] Sulfur hexafluoride microbubbles combined with serology distinguish benign and malignant ovarian tumors
    Chen, Ying
    Wang, Haihua
    He, Yazhou
    Liu, Lu
    Xu, Lili
    MATERIALS EXPRESS, 2022, 12 (10) : 1264 - 1268
  • [29] Evaluation of the Diagnostic Value of the Ultrasound ADNEX Model for Benign and Malignant Ovarian Tumors
    Peng, Xiao-Shan
    Ma, Yue
    Wang, Ling-Ling
    Li, Hai-Xia
    Zheng, Xiu-Lan
    Liu, Ying
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2021, 14 : 5665 - 5673
  • [30] E-flow Doppler Indices for Prediction of Benign and Malignant Ovarian Tumors
    Tongsong, Theera
    Wanapirak, Chanane
    Neeyalavira, Vithida
    Khunamornpong, Surapan
    Sukpan, Kornkanok
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2009, 10 (01) : 139 - 142