Group penalized logistic regression differentiates between benign and malignant ovarian tumors

被引:0
|
作者
Hu, Xuemei [1 ,2 ]
Xie, Ying [3 ]
Yang, Yanlin [4 ]
Jiang, Huifeng [5 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R China
[3] Chongqing Vocat Coll Sci & Technol, Gen Natl Def Educ Coll, Chongqing 400037, Peoples R China
[4] Chongqing Univ, Sch Econ & Business Adm, Chongqing 400044, Peoples R China
[5] Chongqing Technol & Business Univ, Res Ctr Econ Upper Reaches Yangtse River, Chongqing 400067, Peoples R China
关键词
Ovarian cancer; GCD algorithm; GLASSO/GSCAD/GMCP penalty; Machine learning methods; Deep learning methods; VARIABLE SELECTION; CANCER; CA125; HE-4; ROMA;
D O I
10.1007/s00500-023-09231-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ovarian cancer is one of the most common types of cancer in women. Correct differentiation between benign and malignant ovarian tumors is of immense importance in medical fields. In this paper, we introduce group penalized logistic regressions to enhance diagnosis accuracy. Firstly, we divide 349 ovarian cancer patients into two sets: one for learning model parameters, and the other for assessing prediction performance, and select 46 variables from 49 traits as the predictor vector to construct GLASSO/GSCAD/GMCP penalized logistic regressions with 11 groups. Secondly, we develop group coordinate descent (GCD) algorithm and its specific pseudo code to simultaneously complete group selection and group estimation, introduce the tenfold cross validation (CV) procedure to select the relatively optimal tuning parameter, and apply the testing set and Youden index to obtain class probability estimator and class index information. Finally, we compute the accuracy, precision, specificity, sensitivity, F1-score and the area under ROC curve (AUC) to assess the prediction performance to the proposed group penalized methods, and found that GLASSO/GSCAD/GMCP penalized logistic regressions outperform three machine learning methods (ANN, artificial neural network; SVM, support vector machine; XGBoost, eXtreme gradient boosting) and three deep learning methods (CNN, convolutional neural network; DNN, deep neural network; RNN, recurrent neural network) in terms of accuracy, F1-score and AUC.
引用
收藏
页码:18565 / 18584
页数:20
相关论文
共 50 条
  • [1] Group penalized logistic regression differentiates between benign and malignant ovarian tumors
    Xuemei Hu
    Ying Xie
    Yanlin Yang
    Huifeng Jiang
    Soft Computing, 2023, 27 : 18565 - 18584
  • [2] Serological and immunohistochemical biomarkers for discrimination between benign and malignant ovarian tumors
    Dijmarescu, Anda Lorena
    Gheorman, Veronica
    Manolea, Maria Magdalena
    Vrabie, Sidonia Catalina
    Sandulescu, Maria Sidonia
    Silosi, Cristian Adrian
    Silosi, Isabela
    Radu, Mirela
    Popescu-Driga, Mircea Vasile
    Novac, Marius Bogdan
    Padureanu, Vlad
    Istrate-Ofiteru, Anca-Maria
    Boldeanu, Lidia
    ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 2019, 60 (04) : 1163 - 1174
  • [3] The predictive role of thrombocytosis in benign, borderline and malignant ovarian tumors
    Abdulrahman, Ganiy Opeyemi, Jr.
    Das, Nagindra
    Singh, Kerryn Lutchman
    PLATELETS, 2020, 31 (06) : 795 - 800
  • [4] Circulating Microparticles in Patients with Benign and Malignant Ovarian Tumors
    Rank, A.
    Liebhardt, S.
    Zwirner, J.
    Burges, A.
    Nieuwland, R.
    Toth, B.
    ANTICANCER RESEARCH, 2012, 32 (05) : 2009 - 2014
  • [5] A Novel Classifier Based on Urinary Proteomics for Distinguishing Between Benign and Malignant Ovarian Tumors
    Ni, Maowei
    Zhou, Jie
    Zhu, Zhihui
    Yuan, Jingtao
    Gong, Wangang
    Zhu, Jianqing
    Zheng, Zhiguo
    Zhao, Huajun
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [6] Assessment of protein biomarkers for preoperative differential diagnosis between benign and malignant ovarian tumors
    Landolfo, C.
    Achten, E. T. L.
    Ceusters, J.
    Baert, T.
    Froyman, W.
    Heremans, R.
    Vanderstichele, A.
    Thirion, G.
    Van Hoylandt, A.
    Claes, S.
    Oosterlynck, J.
    Van Rompuy, A. S.
    Schols, D.
    Billen, J.
    Van Calster, B.
    Bourne, T.
    Van Gorp, T.
    Vergote, I.
    Timmerman, D.
    Coosemans, A.
    GYNECOLOGIC ONCOLOGY, 2020, 159 (03) : 811 - 819
  • [7] IOTA Simple Rules in Differentiating between Benign and Malignant Ovarian Tumors
    Tantipalakorn, Charuwan
    Wanapirak, Chanane
    Khunamornpong, Surapan
    Sukpan, Kornkanok
    Tongsong, Theera
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2014, 15 (13) : 5123 - 5126
  • [8] Plasma fibrinogen levels in patients with benign and malignant ovarian tumors
    Hefler-Frischmuth, Katrin
    Lafleur, Judith
    Hefler, Lukas
    Polterauer, Stephan
    Seebacher, Veronika
    Reinthaller, Alexander
    Grimm, Christoph
    GYNECOLOGIC ONCOLOGY, 2015, 136 (03) : 567 - 570
  • [9] Tissue factor pathway inhibitor 2: A potential diagnostic marker for discriminating benign from malignant ovarian tumors
    Kobayashi, Hiroshi
    Yamada, Yuki
    Kawaguchi, Ryuji
    Ootake, Norihisa
    Myoba, Shohei
    Kimura, Fuminori
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH, 2022, 48 (09) : 2442 - 2451
  • [10] Machine Learning Differentiates Between Benign and Malignant Parotid Tumors With Contrast-Enhanced Ultrasound Features
    Shan, Jie
    Yang, Yifei
    Liu, Hualian
    Sun, Zhaoyao
    Chen, Mingming
    Zhu, Zhichao
    JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2025, 83 (02) : 208 - 221