General upper bounds for the numerical radius on complex Hilbert space

被引:1
|
作者
Al-Dolat, Mohammed [1 ]
Al-Zoubi, Khaldoun [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
关键词
Numerical radius; Off-diagonal part; Operator matrix; INEQUALITIES;
D O I
10.47974/JIM-1512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we show that if {A(i)}(i-1)(m) i and{X-i}(i-1)(m) are two sets of bounded linear operators on the complex Hilbert space H, then for every n is an element of N and m> 2, we have w(A(1)(n-1) (Sigma(m-1)(i=0) A(m-i) Xm-i A(i+1)(*))(A(1)(*))(n-1)) <= parallel to A(1)parallel to(2n-2) (2 parallel to A(1) parallel to parallel to A(m) parallel to + Sigma(m-1)(j=2)parallel to A(j) parallel to(2)) w(E) and w(A(1)(n-1) A(2) X-2 (A(1)(*))(n) +/- A(1)(n)X(1)A(2)(*) (A(1)*)(n-1)) = 2 parallel to A(1)parallel to(2n-1) parallel to A(2)parallel to w(left perpendicular (X2) (0) (X1) (0) right perpendicular), where w(.) is the numerical radius and E= [(Xm) (0) ... (0) (X1)]. This provides an improvement of Theorem 3 by Fong and Holbrook [3] and a generalization of Theorem 3 by Hirzallah et al. [6]. Moreover, we provide some new upper bounds for the numerical radius of off-diagonal operator matrices and provide a generalization of the main result by Abu-Omar and Kittaneh [17].
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [21] Upper Bounds of a Generalized Numerical Radius
    Rezagholi, Sharifeh
    Hosseini, Mahya
    Firouzian, Siamak
    Fallahi, Kamal
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (03) : 961 - 967
  • [22] New Inequalities for Numerical Radius of Hilbert Space Operator And New Bounds For The Zeros Of Polynomials
    Al-Hawari, Mohammad
    Aldahash, Abdullah Ahmed
    2013 INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS (SCIETECH 2013), 2013, 423
  • [23] Another generalization of the numerical radius for Hilbert space operators
    Zamani, Ali
    Wojcik, Pawel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 114 - 128
  • [24] ON THE ESTIMATION OF q -NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Atra, Arnab
    Roy, Alguni
    OPERATORS AND MATRICES, 2024, 18 (02): : 343 - 359
  • [25] Norm and numerical radius inequalities for Hilbert space operators
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 934 - 945
  • [26] New estimates for the numerical radius of Hilbert space operators
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 946 - 956
  • [27] New Bounds for the Euclidean Numerical Radius of Two Operators in Hilbert Spaces
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    Furuichi, Shigeru
    SYMMETRY-BASEL, 2025, 17 (01):
  • [28] An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality
    Rashid, Mohammad H. M.
    Bani-Ahmad, Feras
    AIMS MATHEMATICS, 2023, 8 (11): : 26384 - 26405
  • [29] NOVEL BOUNDS FOR THE EUCLIDEAN OPERATOR RADIUS OF HILBERT SPACE OPERATOR PAIRS
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (03): : 1083 - 1097
  • [30] Some Upper Bounds for the Berezin Number of Hilbert Space Operators
    Taghavi, Ali
    Roushan, Tahere Azimi
    Darvish, Vahid
    FILOMAT, 2019, 33 (14) : 4353 - 4360