General upper bounds for the numerical radius on complex Hilbert space

被引:1
作者
Al-Dolat, Mohammed [1 ]
Al-Zoubi, Khaldoun [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
关键词
Numerical radius; Off-diagonal part; Operator matrix; INEQUALITIES;
D O I
10.47974/JIM-1512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we show that if {A(i)}(i-1)(m) i and{X-i}(i-1)(m) are two sets of bounded linear operators on the complex Hilbert space H, then for every n is an element of N and m> 2, we have w(A(1)(n-1) (Sigma(m-1)(i=0) A(m-i) Xm-i A(i+1)(*))(A(1)(*))(n-1)) <= parallel to A(1)parallel to(2n-2) (2 parallel to A(1) parallel to parallel to A(m) parallel to + Sigma(m-1)(j=2)parallel to A(j) parallel to(2)) w(E) and w(A(1)(n-1) A(2) X-2 (A(1)(*))(n) +/- A(1)(n)X(1)A(2)(*) (A(1)*)(n-1)) = 2 parallel to A(1)parallel to(2n-1) parallel to A(2)parallel to w(left perpendicular (X2) (0) (X1) (0) right perpendicular), where w(.) is the numerical radius and E= [(Xm) (0) ... (0) (X1)]. This provides an improvement of Theorem 3 by Fong and Holbrook [3] and a generalization of Theorem 3 by Hirzallah et al. [6]. Moreover, we provide some new upper bounds for the numerical radius of off-diagonal operator matrices and provide a generalization of the main result by Abu-Omar and Kittaneh [17].
引用
收藏
页码:761 / 774
页数:14
相关论文
共 17 条
[1]   Numerical radius inequalities for n x n operator matrices [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 :18-26
[2]  
Al-Dolat M., 2020, ADV DIFF EQS, V1, P1
[3]   A novel numerical radius upper bounds for 2 x 2 operator matrices [J].
Al-Dolat, Mohammed ;
Jaradat, Imad ;
Al-Husban, Baraa .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06) :1173-1184
[4]   General numerical radius inequalities for matrices of operators [J].
Al-Dolat, Mohammed ;
Al-Zoubi, Khaldoun ;
Ali, Mohammed ;
Bani-Ahmad, Feras .
OPEN MATHEMATICS, 2016, 14 :109-117
[5]  
Bani-Domi W, 2015, ITAL J PURE APPL MAT, P433
[6]   Norm equalities and inequalities for operator matrices [J].
Bani-Domi, Wathiq ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) :57-67
[7]   Numerical radius inequalities for operator matrices [J].
Bani-Domi, Wathiq ;
Kittaneh, Fuad .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) :421-427
[8]  
Bhatia Rajendra, 1997, Matrix Analysis, DOI 10.1007/978-1-4612-0653-8
[9]   UNITARILY-INVARIANT OPERATOR NORMS [J].
FONG, CK ;
HOLBROOK, JAR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1983, 35 (02) :274-299
[10]  
Hardy G.H., 1988, Inequalities