Several persistent pathogens employ antigenic variation to continually evade mammalian host adaptive immune responses. African trypanosomes use variant surface glycoproteins (VSGs) for this purpose, transcribing one telomeric VSG expression-site at a time, and exploiting a reservoir of (sub)telomeric VSG templates to switch the active VSG. It has been known for over fifty years that new VSGs emerge in a predictable order in Trypanosoma brucei, and differential activation frequencies are now known to contribute to the hierarchy. Switching of approximately 0.01% of dividing cells to many new VSGs, in the absence of post-switching competition, suggests that VSGs are deployed in a highly profligate manner, however. Here, we report that switched trypanosomes do indeed compete, in a highly predictable manner that is dependent upon the activated VSG. We induced VSG gene recombination and switching in in vitro culture using CRISPR-Cas9 nuclease to target the active VSG. VSG dynamics, that were independent of host immune selection, were subsequently assessed using RNA-seq. Although trypanosomes activated VSGs from repressed expression-sites at relatively higher frequencies, the population of cells that activated minichromosomal VSGs subsequently displayed a competitive advantage and came to dominate. Furthermore, the advantage appeared to be more pronounced for longer VSGs. Differential growth of switched clones was also associated with wider differences, affecting transcripts involved in nucleolar function, translation, and energy metabolism. We conclude that antigenic variants compete, and that the population of cells that activates minichromosome derived VSGs displays a competitive advantage. Thus, competition among variants impacts antigenic variation dynamics in African trypanosomes and likely prolongs immune evasion with a limited set of antigens. Author summaryHuman and animal parasites, including those that cause sleeping sickness, malaria and giardiasis, have evolved effective mechanisms to counter host adaptive immunity. These parasite genomes typically incorporate large gene-families encoding variant surface antigens that are deployed during infection, allowing parasites to remain 'one step ahead' of host immune responses. It remains unclear, however, how these reservoirs of surface antigens are effectively deployed. We generated a complex mixture of African trypanosome variants and quantitatively monitored their dynamic behavior over time. The results confirm differential activation rates, and also reveal differential growth rates, which are predictable. Differential growth can facilitate persistence through sparing, rather than profligate, presentation of variant antigens.