Finite-Time Stability and Stabilization of Polynomial Systems

被引:0
作者
Tartaglione, Gaetano [1 ]
Ariola, Marco [1 ]
Amato, Francesco [2 ]
机构
[1] Univ Napoli Parthenope, Ctr Direz Napoli, Dipartimento Ingn, Isola C4, I-80143 Naples, Italy
[2] Univ Napoli Federico II, DIETI, Via Claudio, I-80125 Naples, Italy
来源
2023 AMERICAN CONTROL CONFERENCE, ACC | 2023年
关键词
SUM;
D O I
10.23919/ACC55779.2023.10156117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the class of polynomial systems and we investigate on their finite-time stability properties. In this analysis, for the first time, finite-time stability is defined with respect to domains with polynomial bounds. A sufficient condition for finite-time stability is obtained, which can be solved recasting the feasibility problem in terms of SDP through SOS programming. Moreover, a nonlinear state-feedback control law is developed to stabilize the system in the finite-time notion. The effectiveness of the stabilizing control law is shown by a numerical example.
引用
收藏
页码:1371 / 1376
页数:6
相关论文
共 24 条
[1]  
Amato F, 2014, LECT NOTES CONTR INF, V453, P1, DOI 10.1007/978-1-4471-5664-2
[2]   New conditions for finite-time stability of impulsive dynamical systems via piecewise quadratic functions [J].
Ambrosino, Roberto ;
Ariola, Marco ;
Garone, Emanuele ;
Amato, Francesco ;
Tartaglione, Gaetano .
IET CONTROL THEORY AND APPLICATIONS, 2022, 16 (13) :1341-1351
[3]  
Andersen E.D., 2000, High Performance Optimization, P197, DOI [DOI 10.1007/978-1-4757-3216-0_8, 10.1007/978-1-4757-3216-0, DOI 10.1007/978-1-4757-3216-0]
[4]   Hybrid architecture for vehicle lateral collision avoidance [J].
Ariola, Marco ;
De Tommasi, Gianmaria ;
Tartaglione, Gaetano ;
Amato, Francesco .
IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (14) :1941-1950
[5]  
Bhiri B, 2016, P AMER CONTR CONF, P1142, DOI 10.1109/ACC.2016.7525069
[6]   Computing output feedback controllers to enlarge the domain of attraction in polynomial systems [J].
Chesi, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (10) :1846-1850
[7]  
Chesi G., 2011, DOMAIN ATTRACTION AN, V20
[8]   Global stability analysis of fluid flows using sum-of-squares [J].
Goulart, Paul J. ;
Chernyshenko, Sergei .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (06) :692-704
[9]  
Labit Y, 2002, 2002 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER AIDED CONTROL SYSTEM DESIGN PROCEEDINGS, P272
[10]  
Lofberg J, 2004, 2004 IEEE INT C ROB, P284, DOI [DOI 10.1109/CACSD.2004.1393890, 10.1109/CACSD.2004.1393890]