An inertial proximal splitting method with applications

被引:6
作者
Wang, Xiaoquan [1 ]
Shao, Hu [1 ]
Liu, Pengjie [1 ]
Yang, Wenli [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-block non-convex optimization; splitting method; inertial proximal point method; Kurdyka-Lojasiewicz property; global convergence; ALTERNATING DIRECTION METHOD; LINEAR CONVERGENCE; NONCONVEX; MULTIPLIERS; ADMM; MINIMIZATION; ALGORITHM;
D O I
10.1080/02331934.2023.2230994
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose an inertial proximal splitting method for solving the non-convex optimization problem, and the new method employs the idea of inertial proximal point to improve the computational efficiency. Based on the assumptions that the sequence generated by the new method is bounded and the auxiliary function satisfies the Kurdyka-Lojasiewicz property, the global convergence analysis with a more relaxed parameter range is proved for the proposed method. Moreover, some numerical results on SCAD, image processing and robust PCA non-convex problems are tested to demonstrate the effectiveness and superiority of the proposed method.
引用
收藏
页码:2555 / 2584
页数:30
相关论文
共 60 条
[1]   Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality [J].
Attouch, Hedy ;
Bolte, Jerome ;
Redont, Patrick ;
Soubeyran, Antoine .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :438-457
[2]   Convergence on a Symmetric Accelerated Stochastic ADMMwith Larger Stepsizes [J].
Bai, Jianchao ;
Han, Deren ;
Sun, Hao ;
Zhang, Hongchao .
CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2022, 3 (03) :448-479
[3]   An inexact accelerated stochastic ADMM for separable convex optimization [J].
Bai, Jianchao ;
Hager, William W. ;
Zhang, Hongchao .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (02) :479-518
[4]   Convergence revisit on generalized symmetric ADMM [J].
Bai, Jianchao ;
Chang, Xiaokai ;
Li, Jicheng ;
Xu, Fengmin .
OPTIMIZATION, 2021, 70 (01) :149-168
[5]   Generalized symmetric ADMM for separable convex optimization [J].
Bai, Jianchao ;
Li, Jicheng ;
Xu, Fengmin ;
Zhang, Hongchao .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (01) :129-170
[6]  
Behmardi B, 2011, 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), P265, DOI 10.1109/SSP.2011.5967677
[7]   Proximal alternating linearized minimization for nonconvex and nonsmooth problems [J].
Bolte, Jerome ;
Sabach, Shoham ;
Teboulle, Marc .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :459-494
[8]   Inertial Douglas-Rachford splitting for monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert ;
Hendrich, Christopher .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :472-487
[9]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[10]   Convergent prediction-correction-based ADMM for multi-block separable convex programming [J].
Chang, Xiaokai ;
Liu, Sanyang ;
Zhao, Pengjun ;
Li, Xu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 335 :270-288