On invariants and equivalence of differential operators under Lie pseudogroups actions

被引:0
作者
Lychagin, Valentin
Yumaguzhin, Valeriy
机构
关键词
Linear differential operator; Differential invariant; Lie pseudogroup; Vector bundle; Jet bundle; Lie equation; CLASSIFICATION;
D O I
10.1016/j.geomphys.2023.104839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study invariants of linear differential operators with respect to algebraic Lie pseudogroups. Then we use these invariants and the principle of n-invariants to get normal forms (or models) of the differential operators and solve the equivalence problem for actions of algebraic Lie pseudogroups. As a running example of application of the methods, we use the pseudogroup of local symplectomorphisms.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 24 条
[1]  
Alekseevskij D.V., 1991, ENCY MATH SCI, V28
[2]   Invariants of algebraic group actions from differential point of view [J].
Bibikov, Pavel ;
Lychagin, Valentin .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 136 :89-96
[3]   Projective classification of binary and ternary forms [J].
Bibikov, Pavel ;
Lychagin, Valentin .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) :1914-1927
[4]  
Cartan E., 1909, ANN SCIENTIFIQUES LE, V26, P93, DOI 10.24033/asens.603
[5]  
Derksen H., 2004, INVARIANT THEORY ALL, V35, P11
[6]  
GORDAN P, 1987, VORLESUNGEN INVARIAN
[7]   CLASSIFICATION OF COMPLEX PRIMITIVE INFINITE PSEUDOGROUPS [J].
GUILLEMI.V ;
QUILLEN, D ;
STERNBER.S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1966, 55 (04) :687-&
[8]  
Hilbert D., 1993, THEORY ALGEBRAIC INV
[9]   Global Lie-Tresse theorem [J].
Kruglikov, Boris ;
Lychagin, Valentin .
SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03) :1357-1411
[10]  
Kumpera A., 1972, Lie Equations, V1