Gene function and cell surface protein association analysis based on single-cell multiomics data

被引:93
作者
Hu, Huan [1 ,2 ,3 ,4 ]
Feng, Zhen [5 ]
Lin, Hai [3 ,4 ]
Cheng, Jinyan [3 ,4 ]
Lyu, Jie [3 ,4 ]
Zhang, Yaru [6 ,7 ]
Zhao, Junjie [3 ,4 ,8 ]
Xu, Fei [1 ,3 ,4 ]
Lin, Tao [9 ]
Zhao, Qi [10 ]
Shuai, Jianwei [1 ,2 ,3 ,4 ,9 ,11 ,12 ]
机构
[1] Xiamen Univ, Dept Phys, Fujian Prov Key Lab Soft Funct Mat Res, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Innovat Ctr Cell Signaling Network, State Key Lab Cellular Stress Biol, Xiamen 361005, Peoples R China
[3] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou 325001, Peoples R China
[4] Univ Chinese Acad Sci, Wenzhou Key Lab Biophys, Wenzhou 325001, Peoples R China
[5] Wenzhou Med Univ, Affiliated Hosp 1, Wenzhou 325000, Peoples R China
[6] Wenzhou Med Univ, Sch Biomed Engn, Inst Biomed Big Data, Sch Ophthalmol & Optometry, Wenzhou 325027, Peoples R China
[7] Wenzhou Med Univ, Eye Hosp, Sch Biomed Engn, Wenzhou 325027, Peoples R China
[8] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 510000, Peoples R China
[9] Zhejiang Lab Regenerat Med Vis & Brain Hlth, Oujiang Lab, Wenzhou 325001, Peoples R China
[10] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Peoples R China
[11] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[12] Xiamen Univ, Fujian Prov Key Lab Soft Funct Mat Res, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Single-cell; Multiomics; Cell surface protein; Association analysis; Computing framework; MULTIMODAL OMICS; HETEROGENEITY;
D O I
10.1016/j.compbiomed.2023.106733
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell transcriptomics provides researchers with a powerful tool to resolve the transcriptome heterogeneity of individual cells. However, this method falls short in revealing cellular heterogeneity at the protein level. Previous single-cell multiomics studies have focused on data integration rather than exploiting the full potential of multiomics data. Here we introduce a new analysis framework, gene function and protein association (GFPA), that mines reliable associations between gene function and cell surface protein from single-cell multimodal data. Applying GFPA to human peripheral blood mononuclear cells (PBMCs), we observe an association of epithelial mesenchymal transition (EMT) with the CD99 protein in CD4 T cells, which is consistent with previous findings. Our results show that GFPA is reliable across multiple cell subtypes and PBMC samples. The GFPA python packages and detailed tutorials are freely available at https://github.com/studentiz/GFPA.
引用
收藏
页数:9
相关论文
共 56 条
[11]   Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning [J].
Hong, Jiajun ;
Luo, Yongchao ;
Zhang, Yang ;
Ying, Junbiao ;
Xue, Weiwei ;
Xie, Tian ;
Tao, Lin ;
Zhu, Feng .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) :1437-1447
[12]   Modeling and analyzing single-cell multimodal data with deep parametric inference [J].
Hu, Huan ;
Feng, Zhen ;
Lin, Hai ;
Zhao, Junjie ;
Zhang, Yaru ;
Xu, Fei ;
Chen, Lingling ;
Chen, Feng ;
Ma, Yunlong ;
Su, Jianzhong ;
Zhao, Qi ;
Shuai, Jianwei .
BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
[13]   CITEMOXMBD: A flexible single-cell multimodal omics analysis framework to reveal the heterogeneity of immune cells [J].
Hu, Huan ;
Liu, Ruiqi ;
Zhao, Chunlin ;
Lu, Yuer ;
Xiong, Yichun ;
Chen, Lingling ;
Jin, Jun ;
Ma, Yunlong ;
Su, Jianzhong ;
Yu, Zhengquan ;
Cheng, Feng ;
Ye, Fangfu ;
Liu, Liyu ;
Zhao, Qi ;
Shuai, Jianwei .
RNA BIOLOGY, 2022, 19 (01) :290-304
[14]   The Cancer Surfaceome Atlas integrates genomic, functional and drug response data to identify actionable targets [J].
Hu, Zhongyi ;
Yuan, Jiao ;
Long, Meixiao ;
Jiang, Junjie ;
Zhang, Youyou ;
Zhang, Tianli ;
Xu, Mu ;
Fan, Yi ;
Tanyi, Janos L. ;
Montone, Kathleen T. ;
Tavana, Omid ;
Chan, Ho Man ;
Hu, Xiaowen ;
Vonderheide, Robert H. ;
Zhang, Lin .
NATURE CANCER, 2021, 2 (12) :1406-+
[15]   Importing ArrayExpress datasets into R/Bioconductor [J].
Kauffmann, Audrey ;
Rayner, Tim F. ;
Parkinson, Helen ;
Kapushesky, Misha ;
Lukk, Margus ;
Brazma, Alvis ;
Huber, Wolfgang .
BIOINFORMATICS, 2009, 25 (16) :2092-2094
[16]   Single-cell Proteomics: Progress and Prospects [J].
Kelly, Ryan T. .
MOLECULAR & CELLULAR PROTEOMICS, 2020, 19 (11) :1739-1748
[17]   Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data [J].
Lause, Jan ;
Berens, Philipp ;
Kobak, Dmitry .
GENOME BIOLOGY, 2021, 22 (01)
[18]   NOREVA: normalization and evaluation of MS-based metabolomics data [J].
Li, Bo ;
Tang, Jing ;
Yang, Qingxia ;
Li, Shuang ;
Cui, Xuejiao ;
Li, Yinghong ;
Chen, Yuzong ;
Xue, Weiwei ;
Li, Xiaofeng ;
Zhu, Feng .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W162-W170
[19]   The Molecular Signatures Database Hallmark Gene Set Collection [J].
Liberzon, Arthur ;
Birger, Chet ;
Thorvaldsdottir, Helga ;
Ghandi, Mahmoud ;
Mesirov, Jill P. ;
Tamayo, Pablo .
CELL SYSTEMS, 2015, 1 (06) :417-425
[20]   Molecular signatures database (MSigDB) 3.0 [J].
Liberzon, Arthur ;
Subramanian, Aravind ;
Pinchback, Reid ;
Thorvaldsdottir, Helga ;
Tamayo, Pablo ;
Mesirov, Jill P. .
BIOINFORMATICS, 2011, 27 (12) :1739-1740