Deciphering How Anion Clusters Govern Lithium Conduction in Glassy Thiophosphate Electrolytes through Machine Learning

被引:9
作者
Chen, Zhimin [1 ]
Du, Tao [1 ]
Christensen, Rasmus [1 ]
Bauchy, Mathieu [2 ]
Smedskjaer, Morten M. [1 ]
机构
[1] Aalborg Univ, Dept Chem & Biosci, Aalborg East 9220, DK-9220 Aalborg, Denmark
[2] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
SOLID-STATE ELECTROLYTES; BATTERIES FUNDAMENTALS; IONIC-CONDUCTIVITY; LI2S-P2S5; GLASSES; LI7P3S11; MECHANISMS; CHALLENGES;
D O I
10.1021/acsenergylett.3c00237
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Glasses such as lithium thiophosphates ( Li2S- P2S5) show promise as solid electrolytes for batteries, but a poor understanding of how the disordered structure affects lithium transport properties limits the development of glassy electrolytes. To address this, we here simulate glassy Li2S-P2S5 electrolytes with varying fractions of polyatomic anion clusters, i.e., P2S64-, P2S74-, and PS43-, using classical molecular dynamics. Based on the determined variation in ionic conductivity, we use a classification-based machine-learning metric termed "softness"-a structural fingerprint that is correlated to the atomic rearrangement probability-to unveil the structural origin of lithium-ion mobility. The softness distribution of lithium ions is highly spatially correlated: that is, the "soft" (high mobility) lithium ions are predominantly found around PS43- units, while the "hard" (low mobility) ions are found around P2S64- units. We also show that soft lithium-ion migration requires a smaller energy barrier to be overcome relative to that observed for hard lithium-ion migration.
引用
收藏
页码:1969 / 1975
页数:7
相关论文
共 39 条
[1]   Ionic conducting lanthanide oxides [J].
Adachi, GY ;
Imanaka, N ;
Tamura, S .
CHEMICAL REVIEWS, 2002, 102 (06) :2405-2429
[2]   A new universal force-field for the Li2S-P2S5 system [J].
Ariga, Shunsuke ;
Ohkubo, Takahiro ;
Urata, Shingo ;
Imamura, Yutaka ;
Taniguchi, Taketoshi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (04) :2567-2581
[3]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[4]   Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing [J].
Boaretto, Nicola ;
Garbayo, Inigo ;
Valiyaveettil-SobhanRaj, Sona ;
Quintela, Amaia ;
Li, Chunmei ;
Casas-Cabanas, Montse ;
Aguesse, Frederic .
JOURNAL OF POWER SOURCES, 2021, 502
[5]   Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate [J].
Bohnke, O ;
Bohnke, C ;
Fourquet, JL .
SOLID STATE IONICS, 1996, 91 (1-2) :21-31
[6]   Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study [J].
Chu, Iek-Heng ;
Han Nguyen ;
Hy, Sunny ;
Lin, Yuh-Chieh ;
Wang, Zhenbin ;
Xu, Zihan ;
Deng, Zhi ;
Meng, Ying Shirley ;
Ong, Shyue Ping .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (12) :7843-7853
[7]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[8]   Structure-property relationships from universal signatures of plasticity in disordered solids [J].
Cubuk, E. D. ;
Ivancic, R. J. S. ;
Schoenholz, S. S. ;
Strickland, D. J. ;
Basu, A. ;
Davidson, Z. S. ;
Fontaine, J. ;
Hor, J. L. ;
Huang, Y. -R. ;
Jiang, Y. ;
Keim, N. C. ;
Koshigan, K. D. ;
Lefever, J. A. ;
Liu, T. ;
Ma, X. -G. ;
Magagnosc, D. J. ;
Morrow, E. ;
Ortiz, C. P. ;
Rieser, J. M. ;
Shavit, A. ;
Still, T. ;
Xu, Y. ;
Zhang, Y. ;
Nordstrom, K. N. ;
Arratia, P. E. ;
Carpick, R. W. ;
Durian, D. J. ;
Fakhraai, Z. ;
Jerolmack, D. J. ;
Lee, Daeyeon ;
Li, Ju ;
Riggleman, R. ;
Turner, K. T. ;
Yodh, A. G. ;
Gianola, D. S. ;
Liu, Andrea J. .
SCIENCE, 2017, 358 (6366) :1033-1037
[9]   Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries [J].
Dawson, James A. ;
Canepa, Pieremanuele ;
Famprikis, Theodosios ;
Masquelier, Christian ;
Islam, M. Saiful .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) :362-368
[10]  
Dietrich C., 2017, J. Mater. Chem. A