LSTM-Based Multi-Task Method for Remaining Useful Life Prediction under Corrupted Sensor Data

被引:9
作者
Zhang, Kai [1 ]
Liu, Ruonan [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-task learning; remaining useful life; RUL prediction; LSTM; corrupted sensor data; PROGNOSTICS; MODEL;
D O I
10.3390/machines11030341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data-driven remaining useful life (RUL) prediction plays a vital role in modern industries. However, unpredictable corruption may occur in the collected sensor data due to various disturbances in the real industrial conditions. To achieve better RUL prediction performance under this situation, we propose a novel multi-task method for RUL prediction, which is named multi-task deep long short-term memory (MTD-LSTM). In MTD-LSTM, convolutional neural network (CNN) and long short-term memory (LSTM) are first employed for feature extraction and fusion. Then, the extracted features are fed into the multi-task learning module, which contains missing value imputation and RUL prediction module. The missing values imputation task and RUL prediction task are performed simultaneously. The purpose of the missing value imputation is to obtain integral degradation information by recovering the complete data; thus, the RUL prediction task performs better under corrupted sensor data. In addition, a novel loss term is proposed to smooth the RUL prediction results without any manual post-processing. The effectiveness of the proposed method is verified on the simulated dataset based on the C-MAPSS dataset.
引用
收藏
页数:16
相关论文
共 36 条
[1]   Development of Output Correction Methodology for Long Short Term Memory-Based Speech Recognition [J].
Arslan, Recep Sinan ;
Barisci, Necaattin .
SUSTAINABILITY, 2019, 11 (15)
[2]   A Sequence-to-Sequence Approach for Remaining Useful Lifetime Estimation Using Attention-augmented Bidirectional LSTM [J].
Bin Shah, Sayed Rafay ;
Chadha, Gavneet Singh ;
Schwung, Andreas ;
Ding, Steven X. .
INTELLIGENT SYSTEMS WITH APPLICATIONS, 2021, 10-11
[3]   Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach [J].
Chen, Zhenghua ;
Wu, Min ;
Zhao, Rui ;
Guretno, Feri ;
Yan, Ruqiang ;
Li, Xiaoli .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) :2521-2531
[4]  
Cho K., 2014, P EMPIRICAL METHODS, P1724, DOI 10.48550/arXiv.1406.1078
[5]   A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery [J].
Cubillo, Adrian ;
Perinpanayagam, Suresh ;
Esperon-Miguez, Manuel .
ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (08)
[6]   Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture [J].
Ellefsen, Andre Listou ;
Bjorlykhaug, Emil ;
Aesoy, Vilmar ;
Ushakov, Sergey ;
Zhang, Houxiang .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 183 :240-251
[7]  
Heimes FO, 2008, 2008 INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (PHM), P59
[8]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[10]   A Bidirectional LSTM Prognostics Method Under Multiple Operational Conditions [J].
Huang, Cheng-Geng ;
Huang, Hong-Zhong ;
Li, Yan-Feng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (11) :8792-8802