Mapping N deposition impacts on soil microbial biomass across global terrestrial ecosystems

被引:9
作者
Chen, Chen [1 ]
Chen, Xinli [1 ]
Chen, Han Y. H.
机构
[1] Lakehead Univ, Fac Nat Resources Management, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Global map; Meta-analysis; N deposition; Soil acidification; Soil microbial biomass; Soil pH; NITROGEN DEPOSITION; 1/5; H2O; METAANALYSIS; PH; PATTERNS; CARBON;
D O I
10.1016/j.geoderma.2023.116429
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil microorganisms are key for biodiversity and ecosystem processes. Recent meta-analyses based on nitrogen (N) addition experiments reported an overall negative impact of elevated N on soil microbial biomass on a global scale. However, individual studies have reported divergent effects of N addition, ranging from strongly negative to even positive. Moreover, N deposition varies temporally and spatially worldwide. It remains uncertain how the effects of N deposition on soil microbial biomass vary across global terrestrial ecosystems over time. Through the synthesis of 374 N addition experiments across six continents, we revealed that low quantities of N increased the soil microbial biomass, but high N amounts strongly reduced it. Moreover, the N addition effects were strongly contingent on the ecosystem type, being highly negative in grasslands (-19.3 +/- 6.2%, mean and 95% confidence intervals), negative in forests (-8.6 +/- 4.2%), and positive in croplands (15.1 +/- 12.3%). Further, the soil microbial biomass was most negatively affected by N addition in acidic soils. By combining our meta-analysis results from N addition experiments and global N deposition data, we revealed that the global soil microbial biomass increased by 10.0% in response to cumulative N deposition from 2000-2020. However, regions encompassing the Eastern U.S., Southern Brazil, Europe, and Eastern Asia, with high N deposition rates and large forested areas of acidic soils, were hotspots for microbial biomass loss. Our findings challenge the long-held notion that N deposition has universal negative impacts on soil microbial biomass. Instead, we show that the N deposition impacts on soil microbial biomass are dependent on the amounts of elevated N, ecosystem type, and soil pH, for which N-deposition-induced soil acidification acts as an internal mechanism.
引用
收藏
页数:9
相关论文
共 53 条
  • [1] Global Estimates of Inorganic Nitrogen Deposition Across Four Decades
    Ackerman, Daniel
    Millet, Dylan B.
    Chen, Xin
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2019, 33 (01) : 100 - 107
  • [2] Adams DC, 1997, ECOLOGY, V78, P1277, DOI 10.2307/2265879
  • [3] PHYSIOLOGICAL METHOD FOR QUANTITATIVE MEASUREMENT OF MICROBIAL BIOMASS IN SOILS
    ANDERSON, JPE
    DOMSCH, KH
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 1978, 10 (03) : 215 - 221
  • [4] Barton K., 2022, MuMIn: multi-model inference
  • [5] The global tree restoration potential
    Bastin, Jean-Francois
    Finegold, Yelena
    Garcia, Claude
    Mollicone, Danilo
    Rezende, Marcelo
    Routh, Devin
    Zohner, Constantin M.
    Crowther, Thomas W.
    [J]. SCIENCE, 2019, 365 (6448) : 76 - +
  • [6] Bolker Ben, 2024, CRAN
  • [7] Negative impact of nitrogen deposition on soil buffering capacity
    Bowman, William D.
    Cleveland, Cory C.
    Halada, Lubos
    Hresko, Juraj
    Baron, Jill S.
    [J]. NATURE GEOSCIENCE, 2008, 1 (11) : 767 - 770
  • [8] The chemistry of pedogenic thresholds
    Chadwick, OA
    Chorover, J
    [J]. GEODERMA, 2001, 100 (3-4) : 321 - 353
  • [9] Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration
    Chen, Chen
    Chen, Han Y. H.
    Chen, Xinli
    Huang, Zhiqun
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [10] Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest
    Clemmensen, K. E.
    Bahr, A.
    Ovaskainen, O.
    Dahlberg, A.
    Ekblad, A.
    Wallander, H.
    Stenlid, J.
    Finlay, R. D.
    Wardle, D. A.
    Lindahl, B. D.
    [J]. SCIENCE, 2013, 339 (6127) : 1615 - 1618