On Robin's inequality

被引:4
作者
Axler, Christian [1 ]
机构
[1] Heinrich Heine Univ, Dusseldorf, Germany
关键词
Riemann hypothesis; Robin's inequality; Sum of divisor function; SUM;
D O I
10.1007/s11139-022-00683-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let sigma(n) denote the sum of divisors function of a positive intege rn. Robin proved that the Riemann hypothesis is true if and only if the inequality sigma(n)< e(gamma)n log lognholds for every integern > 5040, where gamma is the Euler-Mascheroni constant. In this paper weestablish a new family of integers for which Robin's inequality sigma(n)< e(gamma)n log lognhold. Further, we establish a new unconditional upper bound for the sum of divisors function. For this purpose, we use an approximation for Chebyshev's theta-function and for some product defined over prime numbers.
引用
收藏
页码:909 / 919
页数:11
相关论文
共 22 条
[1]  
Akbary A., 2007, CONTRIB DISCRET MATH, V2, P153
[2]   On highly composite and similar numbers [J].
Alaoglu, L. ;
Erdos, P. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1944, 56 (1-3) :448-469
[3]   On Robin's criterion for the Riemann Hypothesis [J].
Aoudjit, Safia ;
Berkane, Djamel ;
Dusart, Pierre .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (04) :15-24
[4]  
Axler, 2022, ARXIV
[5]   A NEW UPPER BOUND FOR THE SUM OF DIVISORS FUNCTION [J].
Axler, Christian .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) :374-379
[6]   The Nicolas and Robin inequalities with sums of two squares [J].
Banks, William D. ;
Hart, Derrick N. ;
Moree, Pieter ;
Nevans, C. Wesley .
MONATSHEFTE FUR MATHEMATIK, 2009, 157 (04) :303-322
[7]   Abundant numbers and the Riemann hypothesis [J].
Briggs, Keith .
EXPERIMENTAL MATHEMATICS, 2006, 15 (02) :251-256
[8]   SHARPER BOUNDS FOR THE CHEBYSHEV FUNCTION θ(x) [J].
Broadbent, Samuel ;
Kadiri, Habiba ;
Lumley, Allysa ;
Ng, Nathan ;
Wilk, Kirsten .
MATHEMATICS OF COMPUTATION, 2021, 90 (331) :2281-2315
[9]  
Broughan K. A., 2015, Integers, V15, P5
[10]   Some asymptotic expressions in the theory of numbers [J].
Gronwall, T. H. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1913, 14 (1-4) :113-122