Multishank Thin-Film Neural Probes and Implantation System for High-Resolution Neural Recording Applications

被引:12
作者
Middya, Sagnik [1 ,2 ]
Carnicer-Lombarte, Alejandro [1 ]
Curto, Vincenzo F. F. [1 ]
Hilton, Sam [1 ]
Genewsky, Andreas [3 ]
Rutz, Alexandra L. L. [1 ]
Barone, Damiano G. [1 ,4 ]
Schierle, Gabriele S. Kaminski S. [2 ]
Sirota, Anton [3 ]
Malliaras, George G. G. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge CB3 0FA, England
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[3] Ludwig Maximilians Univ Munchen, Fac Med, Bernstein Ctr Computat Neurosci Munich, D-82152 Planegg Martinsried, Germany
[4] Univ Cambridge, Dept Clin Neurosci, Cambridge CB2 0QQ, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
flexible probes; implanters; microwire shuttles; multishanks; neural recording; BRAIN ACTIVITY; ARRAY; MICROELECTRODE; ORGANIZATION;
D O I
10.1002/aelm.202200883
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon probes have played a key role in studying the brain. However, the stark mechanical mismatch between these probes and the brain leads to chronic damage in the surrounding neural tissue, limiting their application in research and clinical translation. Mechanically flexible probes made of thin plastic shanks offer an attractive tissue-compatible alternative but are difficult to implant into the brain. They also struggle to achieve the electrode density and layout necessary for the high-resolution applications their silicon counterparts excel at. Here, a multishank high-density flexible neural probe design is presented, which emulates the functionality of stiff silicon arrays for recording from neural population across multiple sites within a given region. The flexible probe is accompanied by a detachable 3D printed implanter, which delivers the probe by means of hydrophobic-coated shuttles. The shuttles can then be retracted with minimal movement and the implanter houses the electronics necessary for in vivo recording applications. Validation of the probes through extracellular recordings from multiple brain regions and histological evidence of minimal foreign body response opens the path to long-term chronic monitoring of neural ensembles.
引用
收藏
页数:9
相关论文
共 51 条
[1]   The Brain Activity Map Project and the Challenge of Functional Connectomics [J].
Alivisatos, A. Paul ;
Chun, Miyoung ;
Church, George M. ;
Greenspan, Ralph J. ;
Roukes, Michael L. ;
Yuste, Rafael .
NEURON, 2012, 74 (06) :970-974
[2]   Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes [J].
Apollo, Nicholas, V ;
Murphy, Brendan ;
Prezelski, Kayla ;
Driscoll, Nicolette ;
Richardson, Andrew G. ;
Lucas, Timothy H. ;
Vitale, Flavia .
JOURNAL OF NEURAL ENGINEERING, 2020, 17 (04)
[3]   Multiple site silicon-based probes for chronic recordings in freely moving rats:: implantation, recording and histological verification [J].
Bragin, A ;
Hetke, J ;
Wilson, CL ;
Anderson, DJ ;
Engel, J ;
Buzsáki, G .
JOURNAL OF NEUROSCIENCE METHODS, 2000, 98 (01) :77-82
[4]   Large-scale recording of neuronal ensembles [J].
Buzsáki, G .
NATURE NEUROSCIENCE, 2004, 7 (05) :446-451
[5]   Rethinking cancer nanotheranostics [J].
Chen, Hongmin ;
Zhang, Weizhong ;
Zhu, Guizhi ;
Xie, Jin ;
Chen, Xiaoyuan .
NATURE REVIEWS MATERIALS, 2017, 2 (07)
[6]   Mechanisms of gamma oscillations in the hippocampus of the behaving rat [J].
Csicsvari, J ;
Jamieson, B ;
Wise, KD ;
Buzsáki, G .
NEURON, 2003, 37 (02) :311-322
[7]   A planar impedance sensor for 3D spheroids [J].
Curto, V. F. ;
Ferro, M. P. ;
Mariani, F. ;
Scavetta, E. ;
Owens, R. M. .
LAB ON A CHIP, 2018, 18 (06) :933-943
[8]  
Egert D., 2011, 2011 16 INT SOL ST S, P198
[9]  
Garcia-Cortadella R, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-020-20546-w
[10]   A method for single-neuron chronic recording from the retina in awake mice [J].
Hong, Guosong ;
Fu, Tian-Ming ;
Qiao, Mu ;
Viveros, Robert D. ;
Yang, Xiao ;
Zhou, Tao ;
Lee, Jung Min ;
Park, Hong-Gyu ;
Sanes, Joshua R. ;
Lieber, Charles M. .
SCIENCE, 2018, 360 (6396) :1447-+