A dynamic phase field model for predicting rock fracture diversity under impact loading

被引:13
|
作者
Duan, Junzhe [1 ]
Zhou, Shuwei [1 ]
Xia, Caichu [2 ]
Xu, Yingjun [1 ]
机构
[1] Tongji Univ, Coll Civil Engn, Dept Geotech Engn, Shanghai 200092, Peoples R China
[2] Ningbo Univ, Sch Civil & Environm Engn, Ningbo 315211, Peoples R China
关键词
Phase field model; Numerical simulation; Dynamic fracture diversity; Driving force; Staggered scheme; EDGE-ON IMPACT; CRACK-PROPAGATION; BRITTLE-FRACTURE; MESHFREE METHOD; NUMERICAL-SIMULATION; SHEAR FAILURE; IMPLEMENTATION; INSTABILITY; PRINCIPLES; PARTICLES;
D O I
10.1016/j.ijimpeng.2022.104376
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Predicting dynamic rock fracture is of great significant in rock engineering. The phase field model (PFM) seems to a suitable numerical tool for simulating dynamic rock fracture. However, dynamic fracture diversity cannot be well reproduced by the existing PFMs. Only tension-induced dynamic fracture can be modeled while the dynamic compressive-shear and mixed-mode fractures are limited. Therefore, this study aims to propose a new phase field model that involves all the commonly seen dynamic fracture mechanisms to reflect dynamic rock diversity under impact loading. A new driving force is used and the hybrid phase field framework is adopted. Our PFM is implemented in the framework of finite element method and a staggered scheme is used to solve the coupled governing equations. Previous numerical and experimental studies are used to initially verify the proposed method. A dynamic mode-II test and a dynamic Brazilian disc test are simulated to show the applicability and feasibility of the proposed PFM and also to investigate the dynamic rock fracture diversity under impact loading. The numerical results indicate that the proposed PFM inherits the advantages of the conventional PFMs. Crack initiation and propagation are automatically characterized by the evolution equations of phase field. The parameters used in our model are more suitable for rocks. The difference between tensile-shear fracture and compressive-shear fracture is well distinguished. Different fracture patterns can be predicted by using different coefficient combinations in the proposed dynamic PFM.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] A hybrid phase field method for modeling thermal fractures in brittle rocks: fracture diversity from a modified driving force
    Zhou, Shuwei
    Zhang, Chengkai
    Xu, Yingjun
    Yuan, Ye
    INTERNATIONAL JOURNAL OF FRACTURE, 2022, 238 (02) : 185 - 201
  • [12] Study of rock fracture under blast loading
    Baranowski, Pawel
    Kucewicz, Michal
    Pytlik, Mateusz
    Malachowski, Jerzy
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2022, 70 (05)
  • [13] A generally variational phase field model of fracture
    Yu, Yuanfeng
    Hou, Chi
    Zheng, Xiaoya
    Rabczuk, Timon
    Zhao, Meiying
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 128
  • [14] Study on evolution law of rock crack dynamic propagation in complete process under impact loading
    Wang F.
    Wang M.
    Zhu Z.
    Qiu H.
    Ying P.
    Wang X.
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (06): : 1139 - 1148
  • [15] Dynamic characteristics and fracture process of marble under repeated impact loading
    Wang, Xinyu
    Liu, Zhongyang
    Gao, Xicai
    Li, Pengfei
    Dong, Bin
    ENGINEERING FRACTURE MECHANICS, 2022, 276
  • [16] Phase Field Model of Hydraulic Fracturing in Poroelastic Media: Fracture Propagation, Arrest, and Branching Under Fluid Injection and Extraction
    Santillan, David
    Juanes, Ruben
    Cueto-Felgueroso, Luis
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (03) : 2127 - 2155
  • [17] Phase field model for brittle fracture in multiferroic materials
    Tan, Yu
    Liu, Chang
    Zhao, Jinsheng
    He, Yuxiang
    Li, Peidong
    Li, Xiangyu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 414
  • [18] A modified damage and fracture phase field model considering heterogeneity for rock-like materials
    Chen, Xuxin
    Qin, Zhe
    DEEP UNDERGROUND SCIENCE AND ENGINEERING, 2023, 2 (03) : 286 - 294
  • [19] Uncovering the intrinsic deficiencies of phase-field modeling for dynamic fracture
    Ji, Jiale
    Zhang, Mengnan
    Zeng, Jun
    Tian, Fucheng
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 256
  • [20] Study on dynamic fracture behaviour and fracture toughness in rock-mortar interface under impact load
    Qiu, Hao
    Wang, Fei
    Zhu, Zheming
    Wang, Meng
    Yu, Demei
    Luo, Caisong
    Wan, Duanyin
    COMPOSITE STRUCTURES, 2021, 271