Self-Attention Fully Convolutional DenseNets for Automatic Salt Segmentation

被引:20
|
作者
Saad, Omar M. [1 ]
Chen, Wei [2 ,3 ]
Zhang, Fangxue [4 ]
Yang, Liuqing [5 ]
Zhou, Xu [6 ]
Chen, Yangkang [7 ]
机构
[1] Natl Res Inst Astron & Geophys NRIAG, Seismol Dept, ENSN Lab, Helwan 11421, Egypt
[2] Yangtze Univ, Cooperat Innovat Ctr Unconvent Oil & Gas, Minist Educ & Hubei Prov, Wuhan 430100, Peoples R China
[3] Yangtze Univ, Key Lab Explorat Technol Oil & Gas Resources, Minist Educ, Wuhan 430100, Peoples R China
[4] Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang, Hangzhou 310027, Peoples R China
[5] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China
[6] Louisiana State Univ, Craft & Hawkins Dept Petr Engn, Baton Rouge, LA 70803 USA
[7] Univ Texas Austin, Bur Econ Geol, University Stn, TX 78713 USA
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Data mining; Image segmentation; Convolutional neural networks; Geology; Training; Deep learning; salt segmentation; seismic interpretation; self-attention;
D O I
10.1109/TNNLS.2022.3175419
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3-D salt segmentation is important for many research topics spanning from exploration geophysics to structural geology. In seismic exploration, 3-D salt segmentation is directly related to the velocity modeling building that affects many processing steps, such as seismic migration and full waveform inversion. Manually picking the salt boundary becomes prohibitively time-consuming when the data size is too large. Here, we develop a highly generalized fully convolutional DenseNet for automatic salt segmentation. A squeeze-and-excitation network is used as a self-attention mechanism for guiding the proposed network to extract the most significant information related to the salt signals and discard the others. The proposed framework is a supervised technique and shows robust performance when applied to a new dataset using transfer learning and a small amount of training data. We test the robustness of the proposed framework on the Kaggle TGS salt segmentation dataset. To demonstrate the generalization ability of the framework, we further apply the trained model to an independent dataset synthesized from the 3-D SEAM model. We apply transfer learning to finely tune the trained model from the TGS dataset using only a small percentage of data from the 3-D SEAM dataset and obtain satisfactory results.
引用
收藏
页码:3415 / 3428
页数:14
相关论文
共 50 条
  • [21] Automatic Food Recognition Using Deep Convolutional Neural Networks with Self-attention Mechanism
    Rahib Abiyev
    Joseph Adepoju
    Human-Centric Intelligent Systems, 2024, 4 (1): : 171 - 186
  • [22] Semantic Segmentation of Remote Sensing Image Based on Regional Self-Attention Mechanism
    Zhao, Danpei
    Wang, Chenxu
    Gao, Yue
    Shi, Zhenwei
    Xie, Fengying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [23] Multi-scale Fully Convolutional DenseNets for Automated Skin Lesion Segmentation in Dermoscopy Images
    Zeng, Guodong
    Zheng, Guoyan
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 513 - 521
  • [24] Spectral-Spatial Self-Attention Networks for Hyperspectral Image Classification
    Zhang, Xuming
    Sun, Genyun
    Jia, Xiuping
    Wu, Lixin
    Zhang, Aizhu
    Ren, Jinchang
    Fu, Hang
    Yao, Yanjuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Fully automatic MRI brain tumor segmentation using efficient spatial attention convolutional networks with composite loss
    Mazumdar, Indrajit
    Mukherjee, Jayanta
    NEUROCOMPUTING, 2022, 500 : 243 - 254
  • [26] A Novel Attention Fully Convolutional Network Method for Synthetic Aperture Radar Image Segmentation
    Yue, Zhenyu
    Gao, Fei
    Xiong, Qingxu
    Wang, Jun
    Hussain, Amir
    Zhou, Huiyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (4585-4598) : 4585 - 4598
  • [27] D3-SACNN: DGA Domain Detection With Self-Attention Convolutional Network
    Zhao, Kejun
    Guo, Wei
    Qin, Fenglin
    Wang, Xinjun
    IEEE ACCESS, 2022, 10 : 69250 - 69263
  • [28] Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection
    Guo, Qingle
    Zhang, Junping
    Zhu, Shengyu
    Zhong, Chongxiao
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Image Editing via Segmentation Guided Self-Attention Network
    Zhang, Jianfu
    Yang, Peiming
    Wang, Wentao
    Hong, Yan
    Zhang, Liqing
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1605 - 1609
  • [30] FsaNet: Frequency Self-Attention for Semantic Segmentation
    Zhang, Fengyu
    Panahi, Ashkan
    Gao, Guangjun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4757 - 4772