Asymptotic Consistent Graph Structure Learning for Multivariate Time-Series Anomaly Detection

被引:5
|
作者
Pang, Huaxin [1 ]
Wei, Shikui [1 ]
Li, Youru [1 ]
Liu, Ting [2 ]
Zhang, Huaqi [1 ]
Qin, Ying [1 ]
Zhao, Yao [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
关键词
Time series analysis; Anomaly detection; Training; Sensors; Monitoring; Adaptation models; Transformers; deep learning; graph convolution; graph structure learning; multivariate time series (MTS); NEURAL-NETWORK;
D O I
10.1109/TIM.2024.3369159
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Capturing complex intervariable relationships is crucial for anomaly detection for multivariate time-series (MTS) data. In recent years, graph neural networks (GNNs) have been introduced to explicitly model complex intervariable relationships from global static or local dynamic views, improving the performance of anomaly detection tasks significantly. However, these approaches usually ignore exploring distinct interaction patterns within short context windows or fail to capture unbiased intervariable relationships over longer time windows. To address this limitation, we propose a novel asymptotic consistent graph structure learning (ACGSL) framework for MTS anomaly detection. Specifically, a sequence aggregation module (SeAM) together with a denoising filter is developed to learn the unbiased representation for each temporal variable more effectively. Furthermore, a feature-accumulation graph construct module (FA-GCM) enhanced by asymptotic consistent graph optimization (ACGO) loss is proposed to construct stable interaction graphs over adaptive time windows. We conduct experiments on five benchmarks and achieve remarkable performance enhancement in anomaly detection, even acquiring a maximum gain of 3.64% over the second-best baseline. Furthermore, ACGSL can explicitly give stable intervariable interacted graphs over arbitrary local normal or anomalous states. Extensive experiments and ablation studies demonstrate the effectiveness and robustness of our proposed ACGSL in anomaly detection.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] One-Class Classification Constraint in Reconstruction Networks for Multivariate Time Series Anomaly Detection
    Li, Jiazhen
    Yu, Zhenhua
    Jiang, Qingchao
    Cao, Zhixing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [42] Steps Towards Continual Learning in Multivariate Time-Series Anomaly Detection using Variational Autoencoders
    Garcia Gonzalez, Gaston
    Casas, Pedro
    Fernandez, A.
    Gomez, G.
    PROCEEDINGS OF THE 2022 22ND ACM INTERNET MEASUREMENT CONFERENCE, IMC 2022, 2022, : 774 - 775
  • [43] On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data
    Ayhan, Bulent
    Vargo, Erik P.
    Tang, Huang
    AEROSPACE, 2024, 11 (08)
  • [44] Anomaly Detection in Industrial Multivariate Time-Series Data With Neutrosophic Theory
    Liu, Peng
    Han, Qilong
    Wu, Ting
    Tao, Wenjian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13458 - 13473
  • [45] Multivariate Time Series Anomaly Detection With Generative Adversarial Networks Based on Active Distortion Transformer
    Kong, Lingkun
    Yu, Jinsong
    Tang, Diyin
    Song, Yue
    Han, Danyang
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 9658 - 9668
  • [46] Hybrid graph transformer networks for multivariate time series anomaly detection
    Gao, Rong
    He, Wei
    Yan, Lingyu
    Liu, Donghua
    Yu, Yonghong
    Ye, Zhiwei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01) : 642 - 669
  • [47] Multi-Graph Structure Learning-based Multivariate Time Series Anomaly Detection with Extended Prior Knowledge
    He, Shiming
    Li, GenXin
    Guo, Qinqing
    Xie, Kun
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 109 - 114
  • [48] Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection
    Yang, Qian
    Zhang, Jiaming
    Zhang, Junjie
    Sun, Cailing
    Xie, Shanyi
    Liu, Shangdong
    Ji, Yimu
    ELECTRONICS, 2024, 13 (11)
  • [49] Hybrid graph transformer networks for multivariate time series anomaly detection
    Rong Gao
    Wei He
    Lingyu Yan
    Donghua Liu
    Yonghong Yu
    Zhiwei Ye
    The Journal of Supercomputing, 2024, 80 : 642 - 669
  • [50] Granger Causality for Time-Series Anomaly Detection
    Qiu, Huida
    Liu, Yan
    Subrahmanya, Niranjan A.
    Li, Weichang
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 1074 - 1079