Asymptotic Consistent Graph Structure Learning for Multivariate Time-Series Anomaly Detection

被引:5
|
作者
Pang, Huaxin [1 ]
Wei, Shikui [1 ]
Li, Youru [1 ]
Liu, Ting [2 ]
Zhang, Huaqi [1 ]
Qin, Ying [1 ]
Zhao, Yao [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
关键词
Time series analysis; Anomaly detection; Training; Sensors; Monitoring; Adaptation models; Transformers; deep learning; graph convolution; graph structure learning; multivariate time series (MTS); NEURAL-NETWORK;
D O I
10.1109/TIM.2024.3369159
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Capturing complex intervariable relationships is crucial for anomaly detection for multivariate time-series (MTS) data. In recent years, graph neural networks (GNNs) have been introduced to explicitly model complex intervariable relationships from global static or local dynamic views, improving the performance of anomaly detection tasks significantly. However, these approaches usually ignore exploring distinct interaction patterns within short context windows or fail to capture unbiased intervariable relationships over longer time windows. To address this limitation, we propose a novel asymptotic consistent graph structure learning (ACGSL) framework for MTS anomaly detection. Specifically, a sequence aggregation module (SeAM) together with a denoising filter is developed to learn the unbiased representation for each temporal variable more effectively. Furthermore, a feature-accumulation graph construct module (FA-GCM) enhanced by asymptotic consistent graph optimization (ACGO) loss is proposed to construct stable interaction graphs over adaptive time windows. We conduct experiments on five benchmarks and achieve remarkable performance enhancement in anomaly detection, even acquiring a maximum gain of 3.64% over the second-best baseline. Furthermore, ACGSL can explicitly give stable intervariable interacted graphs over arbitrary local normal or anomalous states. Extensive experiments and ablation studies demonstrate the effectiveness and robustness of our proposed ACGSL in anomaly detection.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Graph Attention Network and Informer for Multivariate Time Series Anomaly Detection
    Zhao, Mengmeng
    Peng, Haipeng
    Li, Lixiang
    Ren, Yeqing
    SENSORS, 2024, 24 (05)
  • [32] Federated Variational Learning for Anomaly Detection in Multivariate Time Series
    Zhang, Kai
    Jiang, Yushan
    Seversky, Lee
    Xu, Chengtao
    Liu, Dahai
    Song, Houbing
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [33] Anomaly Detection of Multivariate Time Series Based on Metric Learning
    Wang, Hongkai
    Feng, Jun
    Peng, Liangying
    Pan, Sichen
    Zhao, Shuai
    Jin, Helin
    DATA SCIENCE (ICPCSEE 2022), PT I, 2022, 1628 : 94 - 110
  • [34] Spacecraft Time-Series Anomaly Detection Using Transfer Learning
    Baireddy, Sriram
    Desai, Sundip R.
    Mathieson, James L.
    Foster, Richard H.
    Chan, Moses W.
    Comer, Mary L.
    Delp, Edward J.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1951 - 1960
  • [35] Time-Series Deep Learning Anomaly Detection for Particle Accelerators
    Marcato, Davide
    Bortolato, Damiano
    Martinelli, Valentina
    Savarese, Giovanni
    Susto, Gian Antonio
    IFAC PAPERSONLINE, 2023, 56 (02): : 1566 - 1571
  • [36] Uni-directional graph structure learning-based multivariate time series anomaly detection with dynamic prior knowledge
    He, Shiming
    Li, Genxin
    Wang, Jin
    Xie, Kun
    Sharma, Pradip Kumar
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (01) : 267 - 283
  • [37] Variational Graph Attention Networks With Self-Supervised Learning for Multivariate Time Series Anomaly Detection
    Gao, Yu
    Qi, Jin
    Ye, Hongjiang
    Sun, Ying
    Hu, Xiaoxuan
    Dong, Zhenjiang
    Sun, Yanfei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [38] Enhancing multivariate time-series anomaly detection with positional encoding mechanisms in transformers
    Alioghli, Abdul Amir
    Okay, Feyza Yildirim
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [39] Multivariate Anomaly Detection in Mixed Telemetry time-series Using A Sparse Decomposition
    Pilastre, Barbara
    Tourneret, Jean-Yves
    D'Escrivan, Stephane
    Boussouf, Loic
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 430 - 434
  • [40] Contrastive Time-Series Anomaly Detection
    Kim, Hyungi
    Kim, Siwon
    Min, Seonwoo
    Lee, Byunghan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5053 - 5065