Asymptotic Consistent Graph Structure Learning for Multivariate Time-Series Anomaly Detection

被引:5
|
作者
Pang, Huaxin [1 ]
Wei, Shikui [1 ]
Li, Youru [1 ]
Liu, Ting [2 ]
Zhang, Huaqi [1 ]
Qin, Ying [1 ]
Zhao, Yao [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
关键词
Time series analysis; Anomaly detection; Training; Sensors; Monitoring; Adaptation models; Transformers; deep learning; graph convolution; graph structure learning; multivariate time series (MTS); NEURAL-NETWORK;
D O I
10.1109/TIM.2024.3369159
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Capturing complex intervariable relationships is crucial for anomaly detection for multivariate time-series (MTS) data. In recent years, graph neural networks (GNNs) have been introduced to explicitly model complex intervariable relationships from global static or local dynamic views, improving the performance of anomaly detection tasks significantly. However, these approaches usually ignore exploring distinct interaction patterns within short context windows or fail to capture unbiased intervariable relationships over longer time windows. To address this limitation, we propose a novel asymptotic consistent graph structure learning (ACGSL) framework for MTS anomaly detection. Specifically, a sequence aggregation module (SeAM) together with a denoising filter is developed to learn the unbiased representation for each temporal variable more effectively. Furthermore, a feature-accumulation graph construct module (FA-GCM) enhanced by asymptotic consistent graph optimization (ACGO) loss is proposed to construct stable interaction graphs over adaptive time windows. We conduct experiments on five benchmarks and achieve remarkable performance enhancement in anomaly detection, even acquiring a maximum gain of 3.64% over the second-best baseline. Furthermore, ACGSL can explicitly give stable intervariable interacted graphs over arbitrary local normal or anomalous states. Extensive experiments and ablation studies demonstrate the effectiveness and robustness of our proposed ACGSL in anomaly detection.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] Multivariate Time Series Anomaly Detection Based on Multiple Spatiotemporal Graph Convolution
    He, Shiming
    Guo, Qingqing
    Li, Genxin
    Xie, Kun
    Sharma, Pradip Kumar
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [22] Multivariate time-series anomaly detection via temporal convolutional and graph attention networks
    He, Qiang
    Wang, Guanqun
    Wang, Hengyou
    Chen, Linlin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5953 - 5962
  • [23] Learning Sparse Latent Graph Representations for Anomaly Detection in Multivariate Time Series
    Han, Siho
    Woo, Simon S.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2977 - 2986
  • [24] Anomaly Detection Framework With Contrastive Learning and Multiview Augmentation for Time-Series Domain Generalization
    Lee, Yeseul
    Song, Seunghwan
    Park, Kwan-Yong
    Koo, Byoung-Mo
    Baek, Jun-Geol
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [25] Consistent Anomaly Detection and Localization of Multivariate Time Series via Cross-Correlation Graph-Based EncoderDecoder GAN
    Liang, Haoran
    Song, Lei
    Du, Junrong
    Li, Xuzhi
    Guo, Lili
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [26] Graph Structure Learning-Based Multivariate Time Series Anomaly Detection in Internet of Things for Human-Centric Consumer Applications
    He, Shiming
    Li, Genxin
    Yi, Tongzhijian
    Alfarraj, Osama
    Tolba, Amr
    Sangaiah, Arun Kumar
    Sherratt, R. Simon
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 5419 - 5431
  • [27] GraphAD: A Graph Neural Network for Entity-Wise Multivariate Time-Series Anomaly Detection
    Chen, Xu
    Qiu, Qiu
    Li, Changshan
    Xie, Kunqing
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2297 - 2302
  • [28] DUMA: Dual Mask for Multivariate Time Series Anomaly Detection
    Pan, Jinwei
    Ji, Wendi
    Zhong, Bo
    Wang, Pengfei
    Wang, Xiaoling
    Chen, Jin
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2433 - 2442
  • [29] Time-Series Deep Learning Anomaly Detection for Particle Accelerators
    Marcato, Davide
    Bortolato, Damiano
    Martinelli, Valentina
    Savarese, Giovanni
    Susto, Gian Antonio
    IFAC PAPERSONLINE, 2023, 56 (02): : 1566 - 1571
  • [30] Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines
    Choi, Kukjin
    Yi, Jihun
    Park, Changhwa
    Yoon, Sungroh
    IEEE ACCESS, 2021, 9 : 120043 - 120065