Model-free scheme using time delay estimation with fixed-time FSMC for the nonlinear robot dynamics

被引:11
作者
Ahmed, Saim [1 ,2 ]
Azar, Ahmad Taher [1 ,2 ,3 ]
Ibraheem, Ibraheem Kasim [4 ,5 ]
机构
[1] Prince Sultan Univ, Coll Comp & Informat Sci, Riyadh 11586, Saudi Arabia
[2] Prince Sultan Univ, Automated Syst & Soft Comp Lab ASSCL, Riyadh 11586, Saudi Arabia
[3] Benha Univ, Fac Comp & Artificial Intelligence, Banha 13518, Egypt
[4] Univ Baghdad, Coll Engn, Dept Elect Engn, Baghdad 10001, Iraq
[5] Uruk Univ, Dept Elect & Commun Engn, Baghdad 10001, Iraq
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 04期
关键词
time delay estimation; fractional-order control; fixed-time sliding mode control; nonlinear robotic system; CONTROLLER;
D O I
10.3934/math.2024489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a scheme of time -delay estimation (TDE) for unknown nonlinear robotic systems with uncertainty and external disturbances that utilizes fractional -order fixed -time sliding mode control (TDEFxFSMC). First, a detailed explanation and design concept of fractionalorder fixed -time sliding mode control (FxFSMC) are provided. High performance tracking positions, non -chatter control inputs, and nonsingular fixed -time control are all realized with the FxSMC method. The proposed approach performs better and obtains superior performance when FxSMC is paired with fractional -order control. Furthermore, a TDE scheme is included in the suggested strategy to estimate the unknown nonlinear dynamics. Afterward, the suggested system's capacity to reach stability in fixed time is determined by using Lyapunov analyses. By showing the outcomes of the proposed technique applied to nonlinear robot dynamics, the efficacy of the recommended method is assessed, illustrated, and with the control scheme.
引用
收藏
页码:9989 / 10009
页数:21
相关论文
共 42 条
[1]   Fractional order mathematical modeling of COVID-19 transmission [J].
Ahmad, Shabir ;
Ullah, Aman ;
Al-Mdallal, Qasem M. ;
Khan, Hasib ;
Shah, Kamal ;
Khan, Aziz .
CHAOS SOLITONS & FRACTALS, 2020, 139 (139)
[2]   Numerical solution of fractional variational and optimal control problems via fractional-order Chelyshkov functions [J].
Ahmed, A. I. ;
Al-Sharif, M. S. ;
Salim, M. S. ;
Al-Ahmary, T. A. .
AIMS MATHEMATICS, 2022, 7 (09) :17418-17443
[3]  
Ahmed S., 2024, Scientia Iranica, V31, P137, DOI [10.24200/sci.2022.57252.5141, DOI 10.24200/SCI.2022.57252.5141]
[4]   Nonlinear system controlled using novel adaptive fixed-time SMC [J].
Ahmed, Saim ;
Azar, Ahmad Taher ;
Ibraheem, Ibraheem Kasim .
AIMS MATHEMATICS, 2024, 9 (04) :7895-7916
[5]   Adaptive Control Design for Euler-Lagrange Systems Using Fixed-Time Fractional Integral Sliding Mode Scheme [J].
Ahmed, Saim ;
Azar, Ahmad Taher ;
Tounsi, Mohamed ;
Ibraheem, Ibraheem Kasim .
FRACTAL AND FRACTIONAL, 2023, 7 (10)
[6]   Adaptive fractional tracking control of robotic manipulator using fixed-time method [J].
Ahmed, Saim ;
Azar, Ahmad Taher .
COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) :369-382
[7]   Adaptive Fault Tolerant Non-Singular Sliding Mode Control for Robotic Manipulators Based on Fixed-Time Control Law [J].
Ahmed, Saim ;
Azar, Ahmad Taher ;
Tounsi, Mohamed .
ACTUATORS, 2022, 11 (12)
[8]   Fault Tolerant Control Using Fractional-order Terminal Sliding Mode Control for Robotic Manipulators [J].
Ahmed, Saim ;
Wang, Haoping ;
Tian, Yang .
STUDIES IN INFORMATICS AND CONTROL, 2018, 27 (01) :55-64
[9]   Study of fractional order pantograph type impulsive antiperiodic boundary value problem [J].
Ali, Arshad ;
Shah, Kamal ;
Abdeljawad, Thabet ;
Khan, Hasib ;
Khan, Aziz .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)