Traffic Flow Optimization using a Chaotic Boltzmann Machine Annealer on an FPGA

被引:0
|
作者
Yoshioka, Kanta [1 ]
Tanaka, Yuichiro [2 ]
Tamukoh, Hakaru [1 ,2 ]
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Kitakyushu, Fukuoka, Japan
[2] Kyushu Inst Technol, Res Ctr Neuromorph AI Hardware, Kitakyushu, Fukuoka, Japan
来源
2023 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, ICFPT | 2023年
关键词
neural networks; Ising machine; annealing machine; field-programmable gate array;
D O I
10.1109/ICFPT59805.2023.00038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a chaotic Boltzmann machine annealer, which is a field-programmable gate array (FPGA)-based high-performance annealing machine, and a control system powered by two open-source software packages. The annealer is employed in solving a large-scale real-world optimization problem, the traffic flow optimization. This involves distributing 500 car routes between the Haneda Airport area to the Pacifico Yokohama area, the venue of the International Conference on Field Programmable Technology 2023, while minimizing the total driving distance and preventing traffic jams. We obtain solutions that are comparable in accuracy to solutions of simulated annealing running on a graphics processing unit (GPU-SA) and a central processing unit (CPU-SA). The annealing machine on an FPGA is approximately 571 and 97600 times as fast as the GPUSA and the CPU-SA, respectively. We will demonstrate solving traffic flow optimization in the towns familiar to the visitors.
引用
收藏
页码:266 / 269
页数:4
相关论文
共 50 条
  • [1] FPGA Implementation of a Chaotic Boltzmann Machine Annealer
    Yoshioka, Kanta
    Katori, Yuichi
    Tanaka, Yuichiro
    Nomura, Osamu
    Morie, Takashi
    Tamukoh, Hakaru
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [2] FPGA Implementation for Large Scale Reservoir Computing based on Chaotic Boltzmann Machine
    Matsumoto, Shigeki
    Ichikawa, Yuki
    Kajihara, Nobuki
    Tamukoh, Hakaru
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [3] FPGA Implementation of Hardware-Oriented Chaotic Boltzmann Machines
    Kawashima, Ichiro
    Morie, Takashi
    Tamukoh, Hakaru
    IEEE ACCESS, 2020, 8 : 204360 - 204377
  • [4] Traffic flow optimization: A reinforcement learning approach
    Walraven, Erwin
    Spaan, Matthijs T. J.
    Bakker, Bram
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 52 : 203 - 212
  • [5] Scalability of using Restricted Boltzmann Machines for combinatorial optimization
    Probst, Malte
    Rothlauf, Franz
    Grahl, Joern
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 256 (02) : 368 - 383
  • [6] Optimization of neural network configurations for short-term traffic flow forecasting using orthogonal design
    Chan, Kit Yan
    Khadem, S.
    Dillon, T. S.
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [7] Partitioning of unstructured grid meshes using Boltzmann machine neural networks
    Theodoridis, J
    Giannakoglou, KC
    Stafylopatis, A
    ADVANCES IN ENGINEERING SOFTWARE, 2000, 31 (07) : 445 - 451
  • [8] Spatial and Temporal Feature Extraction Using a Restricted Boltzmann Machine Model
    Hernandez, Jefferson
    Abad, Andres G.
    APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2018, 2018, 833 : 3 - 13
  • [9] Research on Ship Traffic Flow Prediction Using CNN-BIGRU and WOA With Multi-Objective Optimization
    Xie, Haibo
    Ding, Runzhen
    Qiao, Guanzhou
    Dai, Cheng
    Bai, Weiwei
    IEEE ACCESS, 2024, 12 : 138372 - 138385
  • [10] Solving Traffic Signal Setting Problem Using Machine Learning
    Gora, Pawel
    Brzeski, Maciej
    Karnas, Katarzyna
    Przybyszewski, Przemyslaw
    Klemenko, Arkadiusz
    Kochanski, Adrian
    Dryja, Hubert
    Kukawska, Magdalena
    Kopczyk, Dawid
    Mozejko, Marcin
    MT-ITS 2019: 2019 6TH INTERNATIONAL CONFERENCE ON MODELS AND TECHNOLOGIES FOR INTELLIGENT TRANSPORTATION SYSTEMS (MT-ITS), 2019,