EXISTENCE OF RATIONAL PRIMITIVE NORMAL PAIRS OVER FINITE FIELDS

被引:0
|
作者
Sharma, Rajendra Kumar [1 ]
Takshak, Soniya [1 ]
Awasthi, Ambrish [2 ]
Sharma, Hariom [3 ]
机构
[1] Indian Inst Technol, Dept Math, Hauz Khas, New Delhi 110016, India
[2] Def Res & Dev Org, Sci Anal Grp, Metcalfe House, Delhi 110054, India
[3] S S Govt PG Coll, Faridabad 121101, Haryana, India
关键词
Finite Field; Primitive Element; Normal Element; Character; NORMAL BASES; ELEMENTS;
D O I
10.22108/IJGT.2022.133016.1784
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. For a finite field Fqn and a rational function f = f1 condition for the existence of a primitive normal element alpha is an element of Fqn in such a way f(alpha) is also primitive in Fqn , where f(x) is a rational function in Fqn (x) of degree sum m (degree sum of f(x) = f1 (x) f2(x) is defined to be the sum of the degrees of f1(x) and f2(x)). Additionally, for rational functions of degree sum 4, we proved that there are only 37 and 16 exceptional values of (q, n) when q = 2k and q = 3k respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] PRIMITIVE POLYNOMIALS OVER FINITE-FIELDS
    HANSEN, T
    MULLEN, GL
    MATHEMATICS OF COMPUTATION, 1992, 59 (200) : 639 - 643
  • [42] On the number of primitive polynomials over finite fields
    Chang, Y
    Chou, WS
    Shiue, PJS
    FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (01) : 156 - 163
  • [43] On existence of primitive pairs (ξ plus ξ-1, f(ξ)) with arbitrary traces
    Shukla, Aastha
    Tiwari, Shailesh Kumar
    COMMUNICATIONS IN ALGEBRA, 2024,
  • [44] Inverses of r-primitive k-normal elements over finite fields
    Rani, Mamta
    Sharma, Avnish K.
    Tiwari, Sharwan K.
    Panigrahi, Anupama
    RAMANUJAN JOURNAL, 2024, 63 (03) : 723 - 747
  • [45] Asymptotic existence results for primitive completely normal elements in extensions of Galois fields
    Dirk Hachenberger
    Designs, Codes and Cryptography, 2016, 80 : 577 - 586
  • [46] Completely normal primitive basis generators of finite fields
    Morgan, IH
    Mullen, GL
    UTILITAS MATHEMATICA, 1996, 49 : 21 - 43
  • [47] Primitive Polynomials over Finite Fields of Characteristic Two
    Fan Shuqin
    Han Wenbao
    Applicable Algebra in Engineering, Communication and Computing, 2004, 14 : 381 - 395
  • [48] Primitive polynomials over finite fields of characteristic two
    Fan, SQ
    Han, WB
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 14 (05) : 381 - 395
  • [49] About r-primitive and k-normal elements in finite fields
    Josimar J. R. Aguirre
    Cícero Carvalho
    Victor G. L. Neumann
    Designs, Codes and Cryptography, 2023, 91 : 115 - 126
  • [50] Primitive normal pairs with prescribed norm and trace
    Sharma, Avnish K.
    Rani, Mamta
    Tiwari, Sharwan K.
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 78