Spatial Transformer Generative Adversarial Network for Image Super-Resolution

被引:1
|
作者
Rempakos, Pantelis [1 ]
Vrigkas, Michalis [2 ]
Plissiti, Marina E. [1 ]
Nikou, Christophoros [1 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] Univ Western Macedonia, Dept Commun & Digital Media, Kastoria 52100, Greece
来源
IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I | 2023年 / 14233卷
关键词
Image super-resolution; Spatial transformer; VGG; SRGAN;
D O I
10.1007/978-3-031-43148-7_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-resolution images play an essential role in the performance of image analysis and pattern recognition methods. However, the expensive setup required to generate them and the inherent limitations of the sensors in optics manufacturing technology leads to the restricted availability of these images. In this work, we exploit the information retrieved in feature maps using the notable VGG networks and apply a transformer network to address spatial rigid affine transformation invariances, such as translation, scaling, and rotation. To evaluate and compare the performance of the model, three publicly available datasets were used. The model achieved very gratifying and accurate performance in terms of image PSNR and SSIM metrics against the baseline method.
引用
收藏
页码:399 / 411
页数:13
相关论文
共 50 条
  • [1] Image Super-resolution Reconstructing based on Generative Adversarial Network
    Nan Jing
    Bo Lei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342
  • [2] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [3] Multi-scale generative adversarial network for image super-resolution
    Jiang Daihong
    Zhang Sai
    Dai Lei
    Dai Yueming
    Soft Computing, 2022, 26 : 3631 - 3641
  • [4] Multi-scale generative adversarial network for image super-resolution
    Daihong, Jiang
    Sai, Zhang
    Lei, Dai
    Yueming, Dai
    SOFT COMPUTING, 2022, 26 (08) : 3631 - 3641
  • [5] Image super-resolution reconstruction based on improved generative adversarial network
    Wang Y.-L.
    Li X.-J.
    Ma H.-B.
    Ding Q.
    Pirouz M.
    Ma Q.-T.
    Journal of Network Intelligence, 2021, 6 (02): : 155 - 163
  • [6] Image Super-resolution Reconstruction Based on an Improved Generative Adversarial Network
    Liu, Han
    Wang, Fan
    Liu, Lijun
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,
  • [7] Terahertz image super-resolution restoration using a hybrid-Transformer-based generative adversarial network
    Wu, Heng
    Zheng, Jing
    He, Chunhua
    Xiao, Huapan
    Luo, Shaojuan
    OPTICS AND LASERS IN ENGINEERING, 2025, 189
  • [8] FG-SRGAN: A Feature-Guided Super-Resolution Generative Adversarial Network for Unpaired Image Super-Resolution
    Lian, Shuailong
    Zhou, Hejian
    Sun, Yi
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 151 - 161
  • [9] Adaptive one-stage generative adversarial network for unpaired image super-resolution
    Mingwen Shao
    Huan Liu
    Jianxin Yang
    Feilong Cao
    Neural Computing and Applications, 2023, 35 : 20909 - 20922
  • [10] Adaptive one-stage generative adversarial network for unpaired image super-resolution
    Shao, Mingwen
    Liu, Huan
    Yang, Jianxin
    Cao, Feilong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28) : 20909 - 20922