Almost strict domination and anti-de Sitter 3-manifolds

被引:0
|
作者
Sagman, Nathaniel [1 ,2 ]
机构
[1] Univ Luxembourg, 2 Ave Univ, Esch Sur Alzette, Luxembourg
[2] Univ Luxembourg, 2 Ave Univ, L-4365 Eseh Sur Alzette, Luxembourg
关键词
SURFACE GROUP-REPRESENTATIONS; TWISTED HARMONIC MAPS; MINIMAL-SURFACES; ENERGY; MANIFOLDS; EXISTENCE; MAPPINGS;
D O I
10.1112/topo.12323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a condition called almost strict domination for pairs of representations rho 1:pi 1(Sg,n)-> PSL(2,R)$\rho _1:\pi _1(S_{g,n})\rightarrow \textrm {PSL}(2,\mathbb {R})$, rho 2:pi 1(Sg,n)-> G$\rho _2:\pi _1(S_{g,n})\rightarrow G$, where G$G$ is the isometry group of a Hadamard manifold, and prove that it holds if and only if one can find a (rho 1,rho 2)$(\rho _1,\rho _2)$-equivariant spacelike maximal surface in a certain pseudo-Riemannian manifold, unique up to fixing some parameters. The proof amounts to setting up and solving an interesting variational problem that involves infinite energy harmonic maps. Adapting a construction of Tholozan, we construct all such representations and parametrise the deformation space. When G=PSL(2,R)$G=\textrm {PSL}(2,\mathbb {R})$, an almost strictly dominating pair is equivalent to the data of an anti-de Sitter 3-manifold with specific properties. The results on maximal surfaces provide a parametrisation of the deformation space of such 3-manifolds as a union of components in a PSL(2,R)xPSL(2,R)$\textrm {PSL}(2,\mathbb {R})\times \textrm {PSL}(2,\mathbb {R})$ relative representation variety.
引用
收藏
页数:51
相关论文
共 50 条
  • [1] INFINITE ENERGY EQUIVARIANT HARMONIC MAPS, DOMINATION, AND ANTI-DE SITTER 3-MANIFOLDS
    Sagman, Nathaniel
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 124 (03) : 553 - 598
  • [2] MAXIMAL SURFACES IN ANTI-DE SITTER 3-MANIFOLDS WITH PARTICLES
    Toulisse, Jeremy
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (04) : 1409 - 1449
  • [3] Dominating surface group representations and deforming closed anti-de Sitter 3-manifolds
    Tholozan, Nicolas
    GEOMETRY & TOPOLOGY, 2017, 21 (01) : 193 - 214
  • [4] On the volume of Anti-de Sitter maximal globally hyperbolic three-manifolds
    Bonsante, Francesco
    Seppi, Andrea
    Tamburelli, Andrea
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (05) : 1106 - 1160
  • [5] Stability of de Sitter and anti-de Sitter universes and canonical superenergy tensors
    Garecki, Janusz
    MULTIVERSE AND FUNDAMENTAL COSMOLOGY: MULTICOSMOFUN '12, 2013, 1514
  • [6] Singularities in asymptotically anti-de Sitter spacetimes
    Ishibashi, Akihiro
    Maeda, Kengo
    PHYSICAL REVIEW D, 2012, 86 (10):
  • [7] ON THE η-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS
    Inoguchi, Jun-Ichi
    Lee, Ji-Eun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1303 - 1336
  • [8] Weakly Turbulent Instability of Anti-de Sitter Spacetime
    Bizon, Piotr
    Rostworowski, Andrzej
    PHYSICAL REVIEW LETTERS, 2011, 107 (03)
  • [9] Fermionic Casimir densities in anti-de Sitter spacetime
    Elizalde, E.
    Odintsov, S. D.
    Saharian, A. A.
    PHYSICAL REVIEW D, 2013, 87 (08):
  • [10] Ricci solitons on almost Kenmotsu 3-manifolds
    Wang, Yaning
    OPEN MATHEMATICS, 2017, 15 : 1236 - 1243