General Synthesis of Composition-Tunable High-Entropy Amorphous Oxides Toward High Efficiency Oxygen Evolution Reaction

被引:29
作者
Jiang, Shunda [1 ]
Yu, Yihang [1 ]
He, Huan [1 ]
Wang, Zhiyuan [1 ,2 ,3 ]
Zheng, Runguo [1 ,2 ,3 ]
Sun, Hongyu [2 ]
Liu, Yanguo [1 ,2 ,3 ]
Wang, Dan [1 ,2 ,3 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Peoples R China
[3] Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
amorphous oxides; electrocatalyst; high entropy; oxygen evolution reaction; ALLOY; NANOPARTICLES; CATALYSTS;
D O I
10.1002/smll.202310786
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy materials have attracted much attention in the electrocatalysis field due to their unique structure, high chemical activity, and compositional tunability. However, the harsh and complex synthetic methods limit the application of such materials. Herein, a universal non-equilibrium liquid-phase synthesis strategy is reported to prepare high-entropy amorphous oxide nanoparticles (HEAO-NPs), and the composition of HEAO-NPs can be precisely controlled from tri- to ten-component. The non-equilibrium synthesis environment provided by an excessively strong reducing agent overcomes the difference in the reduction potentials of various metal ions, resulting in the formation of HEAO-NPs with a nearly equimolar ratio. The oxygen evolution reaction (OER) performance of HEAO-NPs is further improved by adjusting the composition and optimizing the electronic structure. The Fe16Co32Ni32Mn10Cu10BOy exhibits a smaller overpotential (only 259 mV at 10 mA cm(-2)) and higher stability in OER compared with commercial RuO2. The amorphous high-entropy structure with an optimized concentration of iron makes the binding energy of CoNi shift to a higher direction, promotes the generation of high-valence active intermediates, and accelerates the OER kinetic process. The HEAO-NPs have promising application potential in the field of catalysis, biology, and energy storage, and this work provides a general synthesis method for composition-controllable high-entropy materials.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction [J].
Abdelhafiz, Ali ;
Wang, Baoming ;
Harutyunyan, Avetik R. ;
Li, Ju .
ADVANCED ENERGY MATERIALS, 2022, 12 (35)
[2]   Atom Doping Engineering of Transition Metal Phosphides for Hydrogen Evolution Reactions [J].
Bai, Huawei ;
Chen, Ding ;
Ma, Qianli ;
Qin, Rui ;
Xu, Hanwen ;
Zhao, Yufeng ;
Chen, Junxin ;
Mu, Shichun .
ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (SUPPL 2)
[3]   Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution [J].
Bergmann, Arno ;
Martinez-Moreno, Elias ;
Teschner, Detre ;
Chernev, Petko ;
Gliech, Manuel ;
de Araujo, Jorge Ferreira ;
Reier, Tobias ;
Dau, Holger ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2015, 6
[4]   Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction [J].
Bhanja, Piyali ;
Kim, Yena ;
Paul, Bappi ;
Kaneti, Yusuf Valentino ;
Alothman, Asma A. ;
Bhaumik, Asim ;
Yamauchi, Yusuke .
CHEMICAL ENGINEERING JOURNAL, 2021, 405
[5]   Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods [J].
Biesuz, Mattia ;
Spiridigliozzi, Luca ;
Dell'Agli, Gianfranco ;
Bortolotti, Mauro ;
Sglavo, Vincenzo M. .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (11) :8074-8085
[6]   General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalysts [J].
Bondesgaard, Martin ;
Broge, Nils Lau Nyborg ;
Mamakhel, Aref ;
Bremholm, Martin ;
Iversen, Bo Brummerstedt .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (50)
[7]   Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization [J].
Chen, Hao ;
Lin, Wenwen ;
Zhang, Zihao ;
Jie, Kecheng ;
Mullins, David R. ;
Sang, Xiahan ;
Yang, Shi-Ze ;
Jafta, Charl J. ;
Bridges, Craig A. ;
Hu, Xiaobing ;
Unocic, Raymond R. ;
Fu, Jie ;
Zhang, Pengfei ;
Dai, Sheng .
ACS MATERIALS LETTERS, 2019, 1 (01) :83-88
[8]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[9]   Rapid Synthesis of High-Entropy Oxide Microparticles [J].
Dong, Qi ;
Hong, Min ;
Gao, Jinlong ;
Li, Tangyuan ;
Cui, Mingjin ;
Li, Shuke ;
Qiao, Haiyu ;
Brozena, Alexandra H. ;
Yao, Yonggang ;
Wang, Xizheng ;
Chen, Gang ;
Luo, Jian ;
Hu, Liangbing .
SMALL, 2022, 18 (11)
[10]   Scaled-up Synthesis of Amorphous NiFeMo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis [J].
Duan, Yu ;
Yu, Zi-You ;
Hu, Shao-Jin ;
Zheng, Xu-Sheng ;
Zhang, Chu-Tian ;
Ding, Hong-He ;
Hu, Bi-Cheng ;
Fu, Qi-Qi ;
Yu, Zhi-Long ;
Zheng, Xiao ;
Zhu, Jun-Fa ;
Gao, Min-Rui ;
Yu, Shu-Hong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (44) :15772-15777