Development of network-guided transcriptomic risk score for disease prediction

被引:0
|
作者
Cao, Xuan [1 ]
Zhang, Liangliang [2 ]
Lee, Kyoungjae [3 ,4 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH USA
[2] Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USA
[3] Sungkyunkwan Univ, Dept Stat, Seoul, South Korea
[4] Sungkyunkwan Univ, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
来源
STAT | 2024年 / 13卷 / 01期
关键词
CONCORD; gene expression data; joint inference; selection consistency; spike and slab prior; BAYESIAN VARIABLE SELECTION; POSTERIOR CONVERGENCE-RATES; GRAPH SELECTION; MODEL SELECTION; REGRESSION; CONSISTENCY; EXPRESSION;
D O I
10.1002/sta4.648
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Omics data, routinely collected in various clinical settings, are of a complex and network-structured nature. Recent progress in RNA sequencing (RNA-seq) allows us to explore whole-genome gene expression profiles and to develop predictive model for disease risk. In this study, we propose a novel Bayesian approach to construct RNA-seq-based risk score leveraging gene expression network for disease risk prediction. Specifically, we consider a hierarchical model with spike and slab priors over regression coefficients as well as entries in the inverse covariance matrix for covariates to simultaneously perform variable selection and network estimation in high-dimensional logistic regression. Through theoretical investigation and simulation studies, our method is shown to both enjoy desirable consistency properties and achieve superior empirical performance compared with other state-of-the-art methods. We analyse RNA-seq gene expression data from 441 asthmatic and 254 non-asthmatic samples to form a weighted network-guided risk score and benchmark the proposed method against existing approaches for asthma risk stratification.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] NELDA: Prediction of LncRNA-disease Associations With Network Embedding
    Li Wei-Na
    Fan Xiao-Nan
    Zhang Shao-Wu
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2022, 49 (07) : 1369 - 1380
  • [42] Genetic Risk Profiling and Prediction of Disease Course in Crohn's Disease Patients
    Henckaerts, Liesbet
    Van Steen, Kristel
    Verstreken, Isabel
    Cleynen, Isabelle
    Franke, Andre
    Schreiber, Stefan
    Rutgeerts, Paul
    Vermeire, Severine
    CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2009, 7 (09) : 972 - 980
  • [43] Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer's disease
    Pandey, Ravi S.
    Graham, Leah
    Uyar, Asli
    Preuss, Christoph
    Howell, Gareth R.
    Carter, Gregory W.
    MOLECULAR NEURODEGENERATION, 2019, 14 (01)
  • [44] Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug
    Lee, Hee Sook
    Bae, Taejeong
    Lee, Ji-Hyun
    Kim, Dae Gyu
    Oh, Young Sun
    Jang, Yeongjun
    Kim, Ji-Tea
    Lee, Jong-Jun
    Innocenti, Alessio
    Supuran, Claudiu T.
    Chen, Luonan
    Rho, Kyoohyoung
    Kim, Sunghoon
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [45] A novel mesenchymal-associated transcriptomic signature for risk-stratification and therapeutic response prediction in colorectal cancer
    Matsuyama, Takatoshi
    Kandimalla, Raju
    Ishikawa, Toshiaki
    Takahashi, Naoki
    Yamada, Yasuhide
    Yasuno, Masamichi
    Kinugasa, Yusuke
    Hansen, Torben Frostrup
    Fakih, Marwan
    Uetake, Hiroyuki
    Gyorffy, Balazs
    Goel, Ajay
    INTERNATIONAL JOURNAL OF CANCER, 2020, 147 (11) : 3250 - 3261
  • [46] Estimating modifiable coronary heart disease risk in multiple regions of the world: the INTERHEART Modifiable Risk Score
    McGorrian, Catherine
    Yusuf, Salim
    Islam, Shofiqul
    Jung, Hyejung
    Rangarajan, Sumathy
    Avezum, Alvaro
    Prabhakaran, Dorairaj
    Almahmeed, Wael
    Rumboldt, Zvonko
    Budaj, Andrzej
    Dans, Antonio L.
    Gerstein, Hertzel C.
    Teo, Koon
    Anand, Sonia S.
    EUROPEAN HEART JOURNAL, 2011, 32 (05) : 581 - U1400
  • [47] Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods
    Zhai, Song
    Zhang, Hong
    Mehrotra, Devan, V
    Shen, Judong
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [48] Prediction of Prognosis, Immunotherapy and Chemotherapy with an Immune-Related Risk Score Model for Endometrial Cancer
    Wei, Wei
    Ye, Bo
    Huang, Zhenting
    Mu, Xiaoling
    Qiao, Jing
    Zhao, Peng
    Jiang, Yuehang
    Wu, Jingxian
    Zhan, Xiaohui
    CANCERS, 2023, 15 (14)
  • [49] Preoperative Risk Score and Prediction of Long-Term Outcomes after Hepatectomy for Intrahepatic Cholangiocarcinoma
    Sasaki, Kazunari
    Margonis, Georgios A.
    Andreatos, Nikolaos
    Bagante, Fabio
    Weiss, Matthew
    Barbon, Carlotta
    Popescu, Irinel
    Marques, Hugo P.
    Aldrighetti, Luca
    Maithel, Shishir K.
    Pulitano, Carlo
    Bauer, Todd W.
    Shen, Feng
    Poultsides, George A.
    Soubrane, Oliver
    Martel, Guillaume
    Koerkamp, B. Groot
    Guglielmi, Alfredo
    Itaru, Endo
    Aucejo, Federico N.
    Pawlik, Timothy M.
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2018, 226 (04) : 393 - 405
  • [50] Development and External Validation of a Multivariable Prediction Model to Identify Nondiabetic Hyperglycemia and Undiagnosed Type 2 Diabetes: Diabetes Risk Assessment in Dentistry Score (DDS)
    Yonel, Z.
    Kocher, T.
    Chapple, I. L. C.
    Dietrich, T.
    Voelzke, H.
    Nauck, M.
    Collins, G.
    Gray, L. J.
    Holtfreter, B.
    JOURNAL OF DENTAL RESEARCH, 2023, 102 (02) : 170 - 177