Development of network-guided transcriptomic risk score for disease prediction

被引:0
|
作者
Cao, Xuan [1 ]
Zhang, Liangliang [2 ]
Lee, Kyoungjae [3 ,4 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH USA
[2] Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USA
[3] Sungkyunkwan Univ, Dept Stat, Seoul, South Korea
[4] Sungkyunkwan Univ, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
来源
STAT | 2024年 / 13卷 / 01期
关键词
CONCORD; gene expression data; joint inference; selection consistency; spike and slab prior; BAYESIAN VARIABLE SELECTION; POSTERIOR CONVERGENCE-RATES; GRAPH SELECTION; MODEL SELECTION; REGRESSION; CONSISTENCY; EXPRESSION;
D O I
10.1002/sta4.648
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Omics data, routinely collected in various clinical settings, are of a complex and network-structured nature. Recent progress in RNA sequencing (RNA-seq) allows us to explore whole-genome gene expression profiles and to develop predictive model for disease risk. In this study, we propose a novel Bayesian approach to construct RNA-seq-based risk score leveraging gene expression network for disease risk prediction. Specifically, we consider a hierarchical model with spike and slab priors over regression coefficients as well as entries in the inverse covariance matrix for covariates to simultaneously perform variable selection and network estimation in high-dimensional logistic regression. Through theoretical investigation and simulation studies, our method is shown to both enjoy desirable consistency properties and achieve superior empirical performance compared with other state-of-the-art methods. We analyse RNA-seq gene expression data from 441 asthmatic and 254 non-asthmatic samples to form a weighted network-guided risk score and benchmark the proposed method against existing approaches for asthma risk stratification.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Polygenic Risk Score Analysis of Pathologically Confirmed Alzheimer Disease
    Valentina, Escott-Price
    Amanda, J. Myers
    Matt, Huentelman
    John, Hardy
    ANNALS OF NEUROLOGY, 2017, 82 (02) : 311 - 314
  • [22] A five ferroptosis-related genes risk score for prognostic prediction of osteosarcoma
    Ge, Zhanyong
    Song, Delei
    MEDICINE, 2022, 101 (50) : E32083
  • [23] Performance of an Adipokine Pathway-Based Multilocus Genetic Risk Score for Prostate Cancer Risk Prediction
    Ribeiro, Ricardo J. T.
    Monteiro, Catia P. D.
    Azevedo, Andreia S. M.
    Cunha, Virginia F. M.
    Ramanakumar, Agnihotram V.
    Fraga, Avelino M.
    Pina, Francisco M.
    Lopes, Carlos M. S.
    Medeiros, Rui M.
    Franco, Eduardo L.
    PLOS ONE, 2012, 7 (06):
  • [24] Transcriptomic and Multi-Scale Network Analyses Reveal Key Drivers of Cardiovascular Disease
    Tumenbayar, Bat-Ider
    Pham, Khanh
    Biber, John C.
    Drewes, Rhonda
    Bae, Yongho
    IEEE TRANSACTIONS ON MOLECULAR BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS, 2025, 11 (01): : 78 - 90
  • [25] INJURY PREDICTION MODELS FOR ONSHORE ROAD NETWORK DEVELOPMENT
    Kustra, Wojciech
    Zukowska, Joanna
    Budzynski, Marcin
    Jamroz, Kazimierz
    POLISH MARITIME RESEARCH, 2019, 26 (02) : 93 - 103
  • [26] Detection of asymptomatic carotid stenosis in patients with lower-extremity arterial disease: development and external validations of a risk score
    Poorthuis, M. H. F.
    Morris, D. R.
    de Borst, G. J.
    Bots, M. L.
    Greving, J. P.
    Visseren, F. L. J.
    Sherliker, P.
    Clack, R.
    Clarke, R.
    Lewington, S.
    Bulbulia, R.
    Halliday, A.
    BRITISH JOURNAL OF SURGERY, 2021, 108 (08) : 960 - 967
  • [27] An evidence update on the protective mechanism of tangeretin against neuroinflammation based on network pharmacology prediction and transcriptomic analysis
    Lv, Shuo
    Chen, Qiyang
    Li, Zhenqing
    Zhou, Zhiqin
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2021, 906
  • [28] Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status
    Yusof, Md Yuzaiful Md
    Psarras, Antonios
    El-Sherbiny, Yasser M.
    Hensor, Elizabeth M. A.
    Dutton, Katherine
    Ul-Hassan, Sabih
    Zayat, Ahmed S.
    Shalbaf, Mohammad
    Alase, Adewonuola
    Wittmann, Miriam
    Emery, Paul
    Vital, Edward M.
    ANNALS OF THE RHEUMATIC DISEASES, 2018, 77 (10) : 1432 - 1438
  • [29] RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response
    Penn-Nicholson, Adam
    Mbandi, Stanley Kimbung
    Thompson, Ethan
    Mendelsohn, Simon C.
    Suliman, Sara
    Chegou, Novel N.
    Malherbe, Stephanus T.
    Darboe, Fatoumatta
    Erasmus, Mzwandile
    Hanekom, Willem A.
    Bilek, Nicole
    Fisher, Michelle
    Kaufmann, Stefan H. E.
    Winter, Jill
    Murphy, Melissa
    Wood, Robin
    Morrow, Carl
    Van Rhijn, Ildiko
    Moody, Branch
    Murray, Megan
    Andrade, Bruno B.
    Sterling, Timothy R.
    Sutherland, Jayne
    Naidoo, Kogieleum
    Padayatchi, Nesri
    Walzl, Gerhard
    Hatherill, Mark
    Zak, Daniel
    Scriba, Thomas J.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [30] A genetic and transcriptomic assessment of the KTN1 gene in Parkinson's disease risk
    Moore, Anni
    Crea, Peter Wild
    Makarious, Mary
    Bandres-Ciga, Sara
    Blauwendraat, Cornelis
    Diez-Fairen, Monica
    NEUROBIOLOGY OF AGING, 2024, 134 : 66 - 73