Deep Learning Approaches for Quantifying Ventilation Defects in Hyperpolarized Gas Magnetic Resonance Imaging of the Lung: A Review

被引:0
作者
Babaeipour, Ramtin [1 ]
Ouriadov, Alexei [1 ,2 ,3 ]
Fox, Matthew S. [2 ,3 ]
机构
[1] Univ Western Ontario, Fac Engn, Sch Biomed Engn, London, ON N6A 3K7, Canada
[2] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada
[3] Lawson Hlth Res Inst, London, ON N6C 2R5, Canada
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 12期
关键词
deep learning; Magnetic Resonance Imaging (MRI); hyperpolarized gas MRI; segmentation; ventilation defect; chronic obstructive pulmonary disease (COPD); lung imaging;
D O I
10.3390/bioengineering10121349
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This paper provides an in-depth overview of Deep Neural Networks and their application in the segmentation and analysis of lung Magnetic Resonance Imaging (MRI) scans, specifically focusing on hyperpolarized gas MRI and the quantification of lung ventilation defects. An in-depth understanding of Deep Neural Networks is presented, laying the groundwork for the exploration of their use in hyperpolarized gas MRI and the quantification of lung ventilation defects. Five distinct studies are examined, each leveraging unique deep learning architectures and data augmentation techniques to optimize model performance. These studies encompass a range of approaches, including the use of 3D Convolutional Neural Networks, cascaded U-Net models, Generative Adversarial Networks, and nnU-net for hyperpolarized gas MRI segmentation. The findings highlight the potential of deep learning methods in the segmentation and analysis of lung MRI scans, emphasizing the need for consensus on lung ventilation segmentation methods.
引用
收藏
页数:44
相关论文
共 106 条
  • [91] 3D convolutional GAN for fast simulation
    Vallecorsa, Sofia
    Carminati, Federico
    Khattak, Gulrukh
    [J]. 23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [92] Value of MRI in medicine: More than just another test?
    van Beek, Edwin J. R.
    Kuhl, Christiane
    Anzai, Yoshimi
    Desmond, Patricia
    Ehman, Richard L.
    Gong, Qiyong
    Gold, Garry
    Gulani, Vikas
    Hall-Craggs, Margaret
    Leiner, Tim
    Lim, C. C. Tschoyoson
    Pipe, James G.
    Reeder, Scott
    Reinhold, Caroline
    Smits, Marion
    Sodickson, Daniel K.
    Tempany, Clare
    Vargas, H. Alberto
    Wang, Meiyun
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (07) : E14 - E25
  • [93] PHONEME RECOGNITION USING TIME-DELAY NEURAL NETWORKS
    WAIBEL, A
    HANAZAWA, T
    HINTON, G
    SHIKANO, K
    LANG, KJ
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (03): : 328 - 339
  • [94] Multi-Atlas Segmentation with Joint Label Fusion
    Wang, Hongzhi
    Suh, Jung W.
    Das, Sandhitsu R.
    Pluta, John B.
    Craige, Caryne
    Yushkevich, Paul A.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (03) : 611 - 623
  • [95] Medical image segmentation using deep learning: A survey
    Wang, Risheng
    Lei, Tao
    Cui, Ruixia
    Zhang, Bingtao
    Meng, Hongying
    Nandi, Asoke K.
    [J]. IET IMAGE PROCESSING, 2022, 16 (05) : 1243 - 1267
  • [96] High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
    Wang, Ting-Chun
    Liu, Ming-Yu
    Zhu, Jun-Yan
    Tao, Andrew
    Kautz, Jan
    Catanzaro, Bryan
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8798 - 8807
  • [97] Deep semantic lung segmentation for tracking potential pulmonary perfusion biomarkers in chronic obstructive pulmonary disease (COPD): The multi-ethnic study of atherosclerosis COPD study
    Winther, Hinrich B.
    Gutberlet, Marcel
    Hundt, Christian
    Kaireit, Till F.
    Alsady, Tawfik Moher
    Schmidt, Bertil
    Wacker, Frank
    Sun, Yanping
    Dettmer, Sabine
    Maschke, Sabine K.
    Hinrichs, Jan B.
    Jambawalikar, Sachin
    Prince, Martin R.
    Barr, R. Graham
    Vogel-Claussen, Jens
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (02) : 571 - 579
  • [98] World Health Organization, 2019, GLOBAL HLTH ESTIMATE
  • [99] Reluplex made more practical: Leaky ReLU
    Xu, Jin
    Li, Zishan
    Du, Bowen
    Zhang, Miaomiao
    Liu, Jing
    [J]. 2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 703 - 709
  • [100] Convolutional neural networks: an overview and application in radiology
    Yamashita, Rikiya
    Nishio, Mizuho
    Do, Richard Kinh Gian
    Togashi, Kaori
    [J]. INSIGHTS INTO IMAGING, 2018, 9 (04): : 611 - 629