Deep Learning Approaches for Quantifying Ventilation Defects in Hyperpolarized Gas Magnetic Resonance Imaging of the Lung: A Review

被引:0
作者
Babaeipour, Ramtin [1 ]
Ouriadov, Alexei [1 ,2 ,3 ]
Fox, Matthew S. [2 ,3 ]
机构
[1] Univ Western Ontario, Fac Engn, Sch Biomed Engn, London, ON N6A 3K7, Canada
[2] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada
[3] Lawson Hlth Res Inst, London, ON N6C 2R5, Canada
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 12期
关键词
deep learning; Magnetic Resonance Imaging (MRI); hyperpolarized gas MRI; segmentation; ventilation defect; chronic obstructive pulmonary disease (COPD); lung imaging;
D O I
10.3390/bioengineering10121349
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This paper provides an in-depth overview of Deep Neural Networks and their application in the segmentation and analysis of lung Magnetic Resonance Imaging (MRI) scans, specifically focusing on hyperpolarized gas MRI and the quantification of lung ventilation defects. An in-depth understanding of Deep Neural Networks is presented, laying the groundwork for the exploration of their use in hyperpolarized gas MRI and the quantification of lung ventilation defects. Five distinct studies are examined, each leveraging unique deep learning architectures and data augmentation techniques to optimize model performance. These studies encompass a range of approaches, including the use of 3D Convolutional Neural Networks, cascaded U-Net models, Generative Adversarial Networks, and nnU-net for hyperpolarized gas MRI segmentation. The findings highlight the potential of deep learning methods in the segmentation and analysis of lung MRI scans, emphasizing the need for consensus on lung ventilation segmentation methods.
引用
收藏
页数:44
相关论文
共 106 条
  • [1] Abadi M., 2019, CoRR abs/1603.04467. arXiv: 1603 . 04467, DOI DOI 10.48550/ARXIV.1603.04467
  • [2] SEEDED REGION GROWING
    ADAMS, R
    BISCHOF, L
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) : 641 - 647
  • [3] Agarap A. F., 2018, Deep learning using rectified linear units (relu)
  • [4] Hyperpolarized 3He MR lung ventilation imaging in asthmatics:: Preliminary findings
    Altes, TA
    Powers, PL
    Knight-Scott, J
    Rakes, G
    Platts-Mills, TAE
    de Lange, EE
    Alford, BA
    Mugler, JP
    Brookeman, JR
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 13 (03) : 378 - 384
  • [5] Astley Joshua R., 2020, Thoracic Image Analysis. Second International Workshop, TIA 2020. Held in Conjunction with MICCAI 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12502), P24, DOI 10.1007/978-3-030-62469-9_3
  • [6] PhysVENeT: a physiologically-informed deep learning-based framework for the synthesis of 3D hyperpolarized gas MRI ventilation
    Astley, Joshua R.
    Biancardi, Alberto M.
    Marshall, Helen
    Smith, Laurie J.
    Hughes, Paul J. C.
    Collier, Guilhem J.
    Saunders, Laura C.
    Norquay, Graham
    Tofan, Malina-Maria
    Hatton, Matthew Q.
    Hughes, Rod
    Wild, Jim M.
    Tahir, Bilal A.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] A Dual-Channel Deep Learning Approach for Lung Cavity Estimation From Hyperpolarized Gas and Proton MRI
    Astley, Joshua R.
    Biancardi, Alberto M.
    Marshall, Helen
    Hughes, Paul J. C.
    Collier, Guilhem J.
    Smith, Laurie J.
    Eaden, James A.
    Hughes, Rod
    Wild, Jim M.
    Tahir, Bilal A.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (06) : 1878 - 1890
  • [8] Large-scale investigation of deep learning approaches for ventilated lung segmentation using multi-nuclear hyperpolarized gas MRI
    Astley, Joshua R.
    Biancardi, Alberto M.
    Hughes, Paul J. C.
    Marshall, Helen
    Smith, Laurie J.
    Collier, Guilhem J.
    Eaden, James A.
    Weatherley, Nicholas D.
    Hatton, Matthew Q.
    Wild, Jim M.
    Tahir, Bilal A.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Less Is More: Adaptive Trainable Gradient Dropout for Deep Neural Networks
    Avgerinos, Christos
    Vretos, Nicholas
    Daras, Petros
    [J]. SENSORS, 2023, 23 (03)
  • [10] Monitoring respiration: What the clinician needs to know
    Ball, Lorenzo
    Sutherasan, Yuda
    Pelosi, Paolo
    [J]. BEST PRACTICE & RESEARCH-CLINICAL ANAESTHESIOLOGY, 2013, 27 (02) : 209 - 223