End-to-end GPU acceleration of low-order-refined preconditioning for high-order finite element discretizations

被引:3
作者
Pazner, Will [1 ,2 ,3 ]
Kolev, Tzanio [2 ]
Camier, Jean-Sylvain [2 ]
机构
[1] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA
[3] Portland State Univ, Fariborz Maseeh Dept Math & Stat, 1855 SW Broadway, Portland, OR 97201 USA
关键词
High-order finite elements; GPU; matrix-free; preconditioning; low-order-refined; ALGEBRAIC MULTIGRID SOLVER; AUXILIARY SPACE AMG; SPECTRAL METHODS; H(DIV); H(CURL); LIBRARY; HYPRE;
D O I
10.1177/10943420231175462
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we present algorithms and implementations for the end-to-end GPU acceleration of matrix-free low-order-refined preconditioning of high-order finite element problems. The methods described here allow for the construction of effective preconditioners for high-order problems with optimal memory usage and computational complexity. The preconditioners are based on the construction of a spectrally equivalent low-order discretization on a refined mesh, which is then amenable to, for example, algebraic multigrid preconditioning. The constants of equivalence are independent of mesh size and polynomial degree. For vector finite element problems in H(curl) and H(div) (e.g., for electromagnetic or radiation diffusion problems), a specially constructed interpolation-histopolation basis is used to ensure fast convergence. Detailed performance studies are carried out to analyze the efficiency of the GPU algorithms. The kernel throughput of each of the main algorithmic components is measured, and the strong and weak parallel scalability of the methods is demonstrated. The different relative weighting and significance of the algorithmic components on GPUs and CPUs is discussed. Results on problems involving adaptively refined nonconforming meshes are shown, and the use of the preconditioners on a large-scale magnetic diffusion problem using all spaces of the finite element de Rham complex is illustrated.
引用
收藏
页码:578 / 599
页数:22
相关论文
共 45 条
[1]   GPU algorithms for Efficient Exascale Discretizations [J].
Abdelfattah, Ahmad ;
Barra, Valeria ;
Beams, Natalie ;
Bleile, Ryan ;
Brown, Jed ;
Camier, Jean-Sylvain ;
Carson, Robert ;
Chalmers, Noel ;
Dobrev, Veselin ;
Dudouit, Yohann ;
Fischer, Paul ;
Karakus, Ali ;
Kerkemeier, Stefan ;
Kolev, Tzanio ;
Lan, Yu-Hsiang ;
Merzari, Elia ;
Min, Misun ;
Phillips, Malachi ;
Rathnayake, Thilina ;
Rieben, Robert ;
Stitt, Thomas ;
Tomboulides, Ananias ;
Tomov, Stanimire ;
Tomov, Vladimir ;
Vargas, Arturo ;
Warburton, Tim ;
Weiss, Kenneth .
PARALLEL COMPUTING, 2021, 108
[2]   MFEM: A modular finite element methods library [J].
Anderson, Robert ;
Andrej, Julian ;
Barker, Andrew ;
Bramwell, Jamie ;
Camier, Jean-Sylvain ;
Cerveny, Jakub ;
Dobrev, Veselin ;
Dudouit, Yohann ;
Fisher, Aaron ;
Kolev, Tzanio ;
Pazner, Will ;
Stowell, Mark ;
Tomov, Vladimir ;
Akkerman, Ido ;
Dahm, Johann ;
Medina, David ;
Zampini, Stefano .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 :42-74
[3]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[4]   EXPOSING FINE-GRAINED PARALLELISM IN ALGEBRAIC MULTIGRID METHODS [J].
Bell, Nathan ;
Dalton, Steven ;
Olson, Luke N. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) :C123-C152
[5]   SCALABLE LOW-ORDER FINITE ELEMENT PRECONDITIONERS FOR HIGH-ORDER SPECTRAL ELEMENT POISSON SOLVERS [J].
Bello-Maldonado, Pedro D. ;
Fischer, Paul F. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) :S2-S18
[6]  
Brown J., 2021, J. Open Source Software, V6, P2945, DOI [DOI 10.21105/JOSS.02945, /10.21105/]
[7]   STABILIZATION OF SPECTRAL METHODS BY FINITE-ELEMENT BUBBLE FUNCTIONS [J].
CANUTO, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :13-26
[8]   FINITE-ELEMENT PRECONDITIONING OF G-NI SPECTRAL METHODS [J].
Canuto, Claudio ;
Gervasio, Paola ;
Quarteroni, Alfio .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06) :4422-4451
[9]   Quasi-optimal Schwarz methods for the conforming spectral element discretization [J].
Casarin, MA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) :2482-2502
[10]   NONCONFORMING MESH REFINEMENT FOR HIGH-ORDER FINITE ELEMENTS [J].
Cerveny, Jakub ;
Dobrev, Veselin ;
Kolev, Tzanio .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04) :C367-C392