FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION

被引:3
作者
Sun, Fengming [1 ]
Zhang, Kang [1 ]
Yuan, Xia [1 ]
Zhao, Chunxia [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
RGB-T; Salient Object Detection; Feature Enhancement; Cross-modality Feature Fusion; REFINEMENT;
D O I
10.1109/ICIP49359.2023.10222404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal information fusion plays a vital role in the RGB-T salient object detection. Due to RGB and thermal images come from different domains, the modality difference will lead to the unsatisfactory effect of simple feature fusion. How to explore and integrate useful information is the key to the RGB-T saliency detection methods. In this paper, we introduce an Enhancement and Fusion Network. In detail, we propose a Self-modality Feature Enhancement Module that effectively integrate the feature representation of a single modality through global context information. And we propose a Cross-modality Feature Dynamic Fusion Module to realize the effective fusion of cross-modal features in the way of dynamic weighting. Experiments on public datasets show that the proposed method achieves satisfactory results compared with other state-of-the-art salient object detection approaches.
引用
收藏
页码:1300 / 1304
页数:5
相关论文
共 50 条
[11]   Scribble-Supervised RGB-T Salient Object Detection [J].
Liu, Zhengyi ;
Huang, Xiaoshen ;
Zhang, Guanghui ;
Fang, Xianyong ;
Wang, Linbo ;
Tang, Bin .
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, :2369-2374
[12]   Cross-Collaboration Weighted Fusion Network for RGB-T Salient Detection [J].
Wang, Yumei ;
Dongye, Changlei ;
Zhao, Wenxiu .
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 :301-312
[13]   MSEDNet: Multi-scale fusion and edge-supervised network for RGB-T salient object detection [J].
Peng, Daogang ;
Zhou, Weiyi ;
Pan, Junzhen ;
Wang, Danhao .
NEURAL NETWORKS, 2024, 171 :410-422
[14]   CAFCNet: Cross-modality asymmetric feature complement network for RGB-T salient object detection [J].
Jin, Dongze ;
Shao, Feng ;
Xie, Zhengxuan ;
Mu, Baoyang ;
Chen, Hangwei ;
Jiang, Qiuping .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
[15]   Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection [J].
Gao, Wei ;
Liao, Guibiao ;
Ma, Siwei ;
Li, Ge ;
Liang, Yongsheng ;
Lin, Weisi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) :2091-2106
[16]   Multi-enhanced Adaptive Attention Network for RGB-T Salient Object Detection [J].
Hao, Hao-Zhou ;
Cheng, Yao ;
Ji, Yi ;
Li, Ying ;
Liu, Chun-Ping .
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
[17]   Intra-Modality Self-Enhancement Mirror Network for RGB-T Salient Object Detection [J].
Wang, Jie ;
Li, Guoqiang ;
Yu, Hongjie ;
Xi, Jinwen ;
Shi, Jie ;
Wu, Xueying .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) :2513-2525
[18]   Does Thermal Really Always Matter for RGB-T Salient Object Detection? [J].
Cong, Runmin ;
Zhang, Kepu ;
Zhang, Chen ;
Zheng, Feng ;
Zhao, Yao ;
Huang, Qingming ;
Kwong, Sam .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :6971-6982
[19]   Pyramid contract-based network for RGB-T salient object detection [J].
Ranwan Wu ;
Hongbo Bi ;
Cong Zhang ;
Jiayuan Zhang ;
Yuyu Tong ;
Wei Jin ;
Zhigang Liu .
Multimedia Tools and Applications, 2024, 83 :20805-20825
[20]   Interactive context-aware network for RGB-T salient object detection [J].
Wang, Yuxuan ;
Dong, Feng ;
Zhu, Jinchao ;
Chen, Jianren .
MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) :72153-72174