Application of self-organizing maps to coal elemental data

被引:7
|
作者
Xu, Na [1 ]
Zhu, Wei [1 ]
Wang, Ru [1 ]
Li, Qiang [1 ]
Wang, Zhiwei [1 ]
Finkelman, Robert B. [1 ,2 ]
机构
[1] China Univ Min & Technol Beijing, Coll Geosci & Survey Engn, Beijing 100083, Peoples R China
[2] Univ Texas Dallas, Richardson, TX 75080 USA
关键词
Coal elemental data; Hierarchical clustering; Self-organizing maps; Modes of occurrence; MARINE CARBONATE SUCCESSIONS; HAZARDOUS TRACE-ELEMENTS; SEDIMENT-SOURCE-REGION; LATE TRIASSIC COALS; LATE PERMIAN COALS; INNER-MONGOLIA; GEOCHEMICAL COMPOSITIONS; DAQINGSHAN COALFIELD; SOUTHWESTERN CHINA; PENNSYLVANIAN COAL;
D O I
10.1016/j.coal.2023.104358
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Understanding the modes of occurrence of elements in coal is important, not only to help properly evaluate the impacts of potentially toxic elements on the environment and human health but also to provide technical guidance for recovering critical elements from coal ash. Statistical and multivariate data analysis methods have widely been used, together with physical and chemical methods, to determine the modes of occurrence of elements in coal. However, some of the statistical methods, e.g., average linkage hierarchical clustering algorithm have some disadvantages (e.g., statistical errors and poor visualization). A self-organizing map is an unsupervised artificial neural network, and it is known for its high data mining capability and excellent data visualization. In contrast to the average linkage hierarchical clustering algorithm that is commonly used for analyzing the modes of occurrence of elements in coal, the self-organizing map algorithm can provide a topological relationship among elements instead of merely providing the groups to which the elements belong. This paper focuses on the application of self-organizing map to coal elemental data for analyzing the modes of occurrence of elements in coal. Samples used in this study are from the Adaohai, Hailiushu, and Datanhao mines, all located in the Daqingshan Coalfield, Inner Mongolia, China. The results obtained from the self-organizing map algorithm are compared with those produced by average linkage hierarchical clustering algorithm. Based on the previous investigations (mainly direct methods) and further analysis, it can be concluded that the results from the self-organizing map algorithm in this investigation are more consistent with the geochemical nature and previous investigations by direct methods than those from average linkage hierarchical clustering algorithm. Consequently, the self-organizing map algorithm is a new reliable and intuitive method for analyzing the modes of occurrence of elements in coal.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Robust self-organizing maps
    Allende, H
    Moreno, S
    Rogel, C
    Salas, R
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, 2004, 3287 : 179 - 186
  • [42] Self-organizing maps and SVD
    Dvorsky, Jiri
    DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 143 - 147
  • [43] Extensions of self-organizing maps
    Trutschl, M
    Cvek, U
    ISIS International Symposium on Interdisciplinary Science, 2005, 755 : 204 - 214
  • [44] Self-organizing visual maps
    Sim, R
    Dudek, G
    PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 470 - 475
  • [45] SORTING WITH SELF-ORGANIZING MAPS
    BUDINICH, M
    NEURAL COMPUTATION, 1995, 7 (06) : 1188 - 1190
  • [46] Asynchronous self-organizing maps
    Benson, MW
    Hu, J
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (06): : 1315 - 1322
  • [47] Midpoint radius self-organizing maps for interval-valued data with telecommunications application
    D'Urso, Pierpaolo
    De Giovanni, Livia
    APPLIED SOFT COMPUTING, 2011, 11 (05) : 3877 - 3886
  • [48] Application of Self-Organizing Maps on Time Series Data for identifying interpretable Driving Manoeuvres
    Sivakkumaran Lakshminarayanan
    European Transport Research Review, 2020, 12
  • [49] Improving cluster visualization in self-organizing maps: Application in gene expression data analysis
    Fernandez, Elmer A.
    Balzarini, Monica
    COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (12) : 1677 - 1689
  • [50] Application of Self-Organizing Maps on Time Series Data for identifying interpretable Driving Manoeuvres
    Lakshminarayanan, Sivakkumaran
    EUROPEAN TRANSPORT RESEARCH REVIEW, 2020, 12 (01)