Automatic student engagement measurement using machine learning techniques: A literature study of data and methods

被引:2
作者
Mandia, Sandeep [1 ]
Mitharwal, Rajendra [1 ]
Singh, Kuldeep [1 ]
机构
[1] Malaviya Natl Inst Technol Jaipur, Dept Elect & Commun Engn, Jaipur, Rajasthan, India
关键词
Student engagement; Machine Learning; Deep Learning; E-learning; Classroom Learning; CLASSROOM; RECOGNITION; FACES;
D O I
10.1007/s11042-023-17534-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Student engagement is positively related to learning outcomes. The student engagement measurement is studied in varied settings, from the traditional classroom to online learning. Artificial intelligence and machine learning advancements have fueled automatic student engagement analysis. The automated student engagement measurement employed several sensor data such as audio, video, and physiological signals in different settings. This paper presents a literature review of automatic student engagement measurement in the classroom and online learning settings, including data collection and annotation techniques, methods, and evaluation metrics. First, a generalized methodology for automatic student engagement analysis is discussed. Then we describe various data collection techniques and annotation methods widely used in the literature and detail the limitations and advantages. The state-of-the-art machine learning methods and the evaluation metrics used to test those methods are reviewed. Additionally, we extend our literature review to the insight into the existing datasets for evaluating the automatic student engagement methods and recent developments in the machine learning methods on open-source datasets. Finally, we present a comprehensive comparison of the methods proposed on various public datasets based on evaluation metrics and engagement types.
引用
收藏
页码:49641 / 49672
页数:32
相关论文
共 50 条
  • [31] An effective correlation-based data modeling framework for automatic diabetes prediction using machine and deep learning techniques
    Kiran Kumar Patro
    Jaya Prakash Allam
    Umamaheswararao Sanapala
    Chaitanya Kumar Marpu
    Nagwan Abdel Samee
    Maali Alabdulhafith
    Pawel Plawiak
    BMC Bioinformatics, 24
  • [32] A Comparative Study of Machine Learning Techniques for Automatic Product Categorisation
    Chavaltada, Chanawee
    Pasupa, Kitsuchart
    Hardoon, David R.
    ADVANCES IN NEURAL NETWORKS, PT I, 2017, 10261 : 10 - 17
  • [33] Literature Survey-Food Recognition and Calorie Measurement Using Image Processing and Machine Learning Techniques
    Reddy, V. Hemalatha
    Kumari, Soumya
    Muralidharan, Vinitha
    Gigoo, Karan
    Thakare, Bhushan S.
    ICCCE 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND CYBER-PHYSICAL ENGINEERING, 2020, 570 : 23 - 37
  • [34] Big Data Analytics using Machine Learning Techniques
    Mittal, Shweta
    Sangwan, Om Prakash
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 203 - 207
  • [35] New Approach to Enhancing Student Performance Prediction Using Machine Learning Techniques and Clickstream Data in Virtual Learning Environments
    Zakaria Khoudi
    Nasereddine Hafidi
    Mourad Nachaoui
    Soufiane Lyaqini
    SN Computer Science, 6 (2)
  • [36] Systematic literature review: Machine learning techniques (machine learning)
    Alfaro, Anderson Damian Jimenez
    Ospina, Jose Vicente Diaz
    CUADERNO ACTIVA, 2021, (13): : 113 - 121
  • [37] Forecasting Daily Fire Radiative Energy Using Data Driven Methods and Machine Learning Techniques
    Thapa, Laura H.
    Saide, Pablo E.
    Bortnik, Jacob
    Berman, Melinda T.
    da Silva, Arlindo
    Peterson, David A.
    Li, Fangjun
    Kondragunta, Shobha
    Ahmadov, Ravan
    James, Eric
    Romero-Alvarez, Johana
    Ye, Xinxin
    Soja, Amber
    Wiggins, Elizabeth
    Gargulinski, Emily
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (16)
  • [38] Predicting Student Performance Using Machine Learning in fNIRS Data
    Oku, Amanda Yumi Ambriola
    Sato, Joao Ricardo
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [39] Using Machine Learning Techniques to Earlier Predict Student's Performance
    Tanuar, Evawaty
    Heryadi, Yaya
    Lukas
    Abbas, Bahtiar Saleh
    Gaol, Ford Lumban
    2018 INDONESIAN ASSOCIATION FOR PATTERN RECOGNITION INTERNATIONAL CONFERENCE (INAPR), 2018, : 85 - 89
  • [40] Early Detection of Prone to Failure Student Using Machine Learning Techniques
    Kadam, Prabha Siddhesh
    Vaze, Vinod Moreshwar
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2021, 14 (05): : 36 - 39